Answer:
The answer is 3
C2H5OH + O2 CO2 +H2O (unbalanced)
C2H5OH +3O2(g). 2CO2(g)+3H2O(balanced)
Answer:- The natural abundance of
is 0.478 or 47.8% and
is 0.522 or 52.2% .
Solution:- Average atomic mass of an element is calculated from the atomic masses of it's isotopes and their abundances using the formula:
Average atomic mass = mass of first isotope(abundance) + mass of second isotope(abundance)
We have been given with atomic masses for
and
as 150.919860 and 152.921243 amu, respectively. Average atomic mass of Eu is 151.964 amu.
Sum of natural abundances of isotopes of an element is always 1. If we assume the abundance of
as n then the abundance of
would be 1-n .
Let's plug in the values in the formula:

151.964=150.919860n+152.921243-152.921243n
on keeping similar terms on same side:


negative sign is on both sides so it is canceled:



The abundance of
is 0.478 which is 47.8%.
The abundance of
is = 
= 0.522 which is 52.2%
Hence, the natural abundance of
is 0.478 or 47.8% and
is 0.522 or 52.2% .
Answer:
volume of gas = 9.1436cm³
Explanation:
We will only temperature from °C to K since the conversion is done by the addition of 273 to the Celsius value.
Its not necessary to convert pressure and volume as their conversions are done by multiplication and upon division using the combined gas equation, the factors used in their conversions will cancel out.
V1 =10.1cm³ , P1 =746mmHg, T1=23°C =23+273=296k
V2 =? , P2 =760mmmHg , T2=0°C = 0+273 =273K
Using the combined gas equation to calculate for V2;


V2=9.1436cm³
You need to use Avogadro's constant to convert from atoms of carbon to moles of carbon.
1.71*10^24 atoms C * (1 mole/6.022*10^23 atoms) = 2.84 moles of carbon
Answer:
c.
Explanation:
it is c.-1 because oxidation number of cl is-1