Answer:
20 kg
Explanation:
Mass equals force divided by acceleration, so divide 100 N by 5 m/s2 and you get your mass: 20 kg
The task is to show that the right side of the equation has units of [Time], just like the left side has.
The right side of the equation is . . . 2 π √(L/G) .
We can completely ignore the 2π since it has no units at all, so it has no effect on the units of the right side of the equation. Now the task is simply to find the units of √(L/G) .
L . . . meters
G . . . meters/sec²
(L/G) = (meters) / (meters/sec²)
(L/G) = (meters) · (sec²/meters)
(L/G) = (meters · sec²) / (meters)
(L/G) = sec²
So √(L/G) = seconds = [Time]
THAT's what we were hoping to prove, and we did it !
Answer:
Explanation:
1 g is 9.8 m/s^2 the problem wants the results in km/h so we'll fix that really quick.
9.8 m/s^2 (1 km/1000m)(60 sec/1 min)^2(60 min/1 hour)^2 = 127008 km/hour^2
Now, I'm assuming the ship is starting from rest, and hopefully you know your physics equations. We are going to use vf = vi + at. Everything is just given, or we can assume, so I'll just solve.
vf = vi + at
vf = 0 + 127008 km/hour^2 * 24 hours
vf = 3,048,192 km/hour
If there's anything that doesn't make sense let me know.
Answer:
80 ft/s
Explanation:
Use III equation of motion
V^2 = U^2 + 2g h
Here, U = 0, g = 32 ft/s^2, h = 100 ft
V^2 = 0 + 2 × 32 ×100
V^2 = 6400
V = 80 ft/s