A small 20-kg canoe is floating downriver at a speed of 2 m/s. 40 J is the canoe’s kinetic energy.
Answer: Option A
<u>Explanation:</u>
The given canoe has the mass and is being given to move at a speed. Therefore the kinetic energy of the canoe can be calculated using the following method,
Given that mass of the canoe = 20 kg and its speed =1 m/s
As we know that the Kinetic energy has the formula,
Therefore, substituting the value into the equation, we get,
= 40 J
To solve this there is this website that I found that helps
I am in middle school so I have no idea how to solve this
but
this website may help considering u are in high school and u
(hopefully mind u)
know how to solve this
so to get there u google
"whats impact speed"
and click on the first thing there the website is ehow
Elastic potential energy is equal to the force times the distance of movement. Elastic potential energy = force x distance of displacement. Because the force is = spring constant x displacement, then the Elastic potential energy = spring constant x displacement squared.
Mainly because of the higher energy of blue light than red light.
In fact, light is made of photons, each one carrying an energy equal to
where h is the Planck constant while f is the frequency of the light.
The frequency of red light is approximately 450 THz, while the frequency of blue light is about 650 Hz. Higher frequency means higher energy, so blue light is more energetic than red light and therefore it can cause more damages than red light.