Answer:
B: leaving metal outside in the rain until rust forms an it's surface
Answer:
θ = 12.95º
Explanation:
For this exercise it is best to separate the process into two parts, one where they collide and another where the system moves altar the maximum height
Let's start by finding the speed of the bar plus clay ball system, using amount of momentum
The mass of the bar (M = 0.080 kg) and the mass of the clay ball (m = 0.015 kg) with speed (v₀ = 2.0 m / s)
Initial before the crash
p₀ = m v₀
Final after the crash before starting the movement
= (m + M) v
p₀ = 
m v₀ = (m + M) v
v = v₀ m / (m + M)
v = 2.0 0.015 / (0.015 +0.080)
v = 0.316 m / s
With this speed the clay plus bar system comes out, let's use the concept of conservation of mechanical energy
Lower
Em₀ = K = ½ (m + M) v²
Higher
= U = (m + M) g y
Em₀ = 
½ (m + M) v² = (m + M) g y
y = ½ v² / g
y = ½ 0.316² / 9.8
y = 0.00509 m
Let's look for the angle the height from the pivot point is
L = 0.40 / 2 = 0.20 cm
The distance that went up is
y = L - L cos θ
cos θ = (L-y) / L
θ = cos⁻¹ (L-y) / L
θ = cos⁻¹-1 ((0.20 - 0.00509) /0.20)
θ = 12.95º
Answer: The smallest effort = 300N
Explanation:
Using one of the condition for the attainment of equilibrium:
Clockwise moment = anticlockwise moments
900 × 1 = 3 × M
Where M = the weight of the strong man
3M = 900
M = 900/3 = 300N
Therefore, 300N is the smallest effort that the strongman can use to lift the goat
The dna is multiplied obviously
Answer:
Acceleration = 10.06 m/s²
Explanation:
1 mile = 1.6093km
1609.3m = 1 mile
1 m =
mile
50.0 miles/hour =
m/s
= 22.35m/s
from equation
S = Ut + 1/2 at²
v = U + at
22.35 = 0 + a * 2.22
a = 22.35 ÷ 2.22
= 10.06 m/s²