Convert the child weight (37.3 pounds) to kilograms
37.3 lb x 0.453 kg /1lb = "A kg"
multiply the dose (9.00mg/kg) by the weight of the child to find how much you need to give him
A kg * 9.00 mg/1kg = "B mg"
calculate the mL of suspension dividing the "B mg" by the concentration of the suspension 60.0 mg/mL
B mg * 1mL/ 60.0 mg = C mL <span>oxcarbazepine</span>
Answer:
625 mL
Explanation:
From the question given above, the following data were obtained:
Volume of stock solution (V₁) = 250 mL
Molarity of stock solution (M₁) = 5 M
Molarity of diluted solution (M₂) = 2 M
Volume of diluted solution (V₂) =?
The volume of the diluted solution can be obtained by using the dilution formula as illustrated below:
M₁V₁ = M₂V₂
5 × 250 = 2 × V₂
1250 = 2 × V₂
Divide both side by 2
V₂ = 1250 / 2
V₂ = 625 mL
Therefore, the volume of the diluted solution is 625 mL.
Answer:
Answer E.
For a collision to be completely elastic, there must be NO LOSS in kinetic energy.
We can go through each answer choice:
A. Since the ball rebounds at half the initial speed, there is a loss in kinetic energy. This is NOT an elastic collision.
B. A collision involving sticking is an example of a perfectly INELASTIC collision. This is NOT an elastic collision.
C. A reduced speed indicates that there is a loss of kinetic energy. This is NOT elastic.
D. The balls traveling at half the speed after the collision indicates a loss of kinetic energy, making this collision NOT elastic.
E. This collision indicates an exchange of velocities, characteristic of an elastic collision. We can prove this:
Let:
m = mass of each ball
v = velocity
We have the initial kinetic energy as:
KE = \frac{1}{2}mv^2 + 0 = \frac{1}{2}mv^2KE=21mv2+0=21mv2
And the final as:
KE = 0 + \frac{1}{2}mv^2 = \frac{1}{2}mv^2KE=0+21mv2=21mv2
The answer is B
Homozygous mean the same and you know that the two alleles will be the same (either BB or bb) and receive is usually the lower case set of alleles
Answer:
the motion of molecules increases