1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
faust18 [17]
3 years ago
6

2. If you want to increase the pressure, you should increase the area over which the force operates. True False

Physics
2 answers:
Elena L [17]3 years ago
5 0
False, you'd have less pressure if you increased the area.

P=F/A, you're dividing by A. If you say, doubled A, you'd have only half the pressure.
wel3 years ago
3 0
False - the greater the area a given force operates the lower the pressure
You might be interested in
A 500 kg block is attached to a horizontal spring that is at its equilibrium length, and whose force constant is 30 N/m. The blo
m_a_m_a [10]

Answer:

x = 0.396 m

Explanation:

The best way to solve this problem is to divide it into two parts: one for the clash of the putty with the block and another when the system (putty + block) compresses it is   spring

Data the putty has a mass m1 and velocity vo1, the block has a mass m2 .  t's start using the moment to find the system speed.

Let's form a system consisting of putty and block; For this system the forces during the crash are internal and the moment is preserved. Let's write the moment before the crash

    p₀ = m1 v₀₁

Moment after shock

    p_{f} = (m1 + m2) v_{f}

   p₀ = p_{f}

   m1 v₀₁ = (m1 + m2) v_{f}

  v_{f} = v₀₁ m1 / (m1 + m2)

   v_{f}= 4.4 600 / (600 + 500)

  v_{f} = 2.4 m / s

With this speed the putty + block system compresses the spring, let's use energy conservation for this second part, write the mechanical energy before and after compressing the spring

Before compressing the spring

   Em₀ = K = ½ (m1 + m2) v_{f}²

After compressing the spring

   E_{mf} = Ke = ½ k x²

As there is no rubbing the energy is conserved

   Em₀ = E_{mf}

   ½ (m1 + m2) v_{f}² = = ½ k x²

   x = v_{f} √ (k / (m1 + m2))

   x = 2.4 √ (11/3000)

   x = 0.396 m

7 0
4 years ago
6X-6=9<br><br> Solve for X<br><br> Round to TWO decimal places
Brums [2.3K]

Answer:

X=2.50

Explanation:

6x-6=9

6x= 9+6

X=15/6

X= 2.50

8 0
3 years ago
B
SVEN [57.7K]

Answer:

Frequency = 1,550Hz

Explanation:

To solve this we can use the equation: f=\frac{v}{\lambda}

(frequency = velocity/wavelength).

We are given the information that the wavelength is 22cm and the speed is 340m/s. The first step is to make sure everything is in the correct units (SI units), and to convert them if needed. The SI Units for velocity and wavelength are m/s and m respectively. This means we need to convert 22cm into meters, which we can do by dividing by 100, (as there are 100cm in a meter). 22/100 = 0.22m

Now we can substitute these values into the formula and calculate to solve:

f=\frac{340}{0.22} \\\\f=1545.454...

Simplify to 3 significant figures:

f = 1,550Hz

(Which I believe is just below a G6 if you were interested)

Hope this helped!

4 0
3 years ago
In 1965, a group of students wore black arm bands to school in protest of American policies in Vietnam. Administrators banned th
Ede4ka [16]

Answer:

protected under students first amendment rights

Explanation:

did the studyisland :)

4 0
3 years ago
A large fraction of the ultraviolet (UV) radiation coming from the sun is absorbed by the atmosphere. The main UV absorber in ou
irakobra [83]

Answer:

λ = 3.2 x 10⁻⁷ m = 320 nm

Explanation:

The relationship between the velocity of electromagnetic waves (UV rays) and the their frequency is:

v = fλ

where,

v = c = speed of the electromagnetic waves (UV rays) = speed of light

c = 3 x 10⁸ m/s

f = frequency of the electromagnetic waves (UV rays) = 9.38 x 10¹⁴ Hz

λ = wavelength of the electromagnetic waves (UV rays) = ?

Therefore, substituting the values in the relation, we get:

3 x 10⁸ m/s = (9.38 x 10¹⁴ Hz)(λ)

λ = (3 x 10⁸ m/s)/(9.38 x 10¹⁴ Hz)

<u>λ = 3.2 x 10⁻⁷ m = 320 nm</u>

So, the radiation of <u>320 nm</u> wavelength is absorbed by Ozone.

3 0
4 years ago
Read 2 more answers
Other questions:
  • If a curve with a radius of 65 m is properly banked for a car traveling 75 km/h, what must be the coefficient of static friction
    9·1 answer
  • To test the hypothesis above, you will observe the changes during the experiment. To do this, you will use these observations to
    6·2 answers
  • A sound wave travels at 330 m/sec and has a wavelength of 2 meters. Calculate its frequency and period.
    15·2 answers
  • Which process is used to make low cost energy by nuclear power plant​
    13·1 answer
  • It takes 23 hours 56 minutes and 4 seconds for the earth to make one revolution (mean sidereal day). What is the angular speed o
    14·1 answer
  • Save
    7·1 answer
  • During the motion of the slinky in a transverse wave, what do the particles of the slinky coil do?
    5·1 answer
  • What colors of light are absorbed when white light falls on a green object?
    11·2 answers
  • Two forces act on a 1250 kg sailboat as it moves through the water with an initial velocity of 11 m/s. The forward force of the
    15·1 answer
  • U= (-5,3) find the magnitude of u. please help me
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!