Answer:
28.43 min
Explanation:
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given that:
The rate constant, k =
min⁻¹
Initial concentration
= 0.1 M
Final concentration
=
M
Time = ?
Applying in the above equation, we get that:-




Answer:
poor hydrogen-ion donor
Explanation:
Acid dissociation constant constant chemistry is the equilibrium constant of the dissociation reaction of an acid, it is denoted by Ka. This equilibrium constant is a measure of the strength of an acid in a solution.
Note these as a rule of thumb:
When Ka is large, the dissociation of the acid is favored.
When Ka is small, the acid does not dissociate to a large extent.
Hence, a Ka of 4.3 x 10-7 shows a weak acid. A weak acid is a poor hydrogen ion donor because it does not dissociate to a large extent in solution.
I think the correct answer would be A. When a polonium atom with 84 protons, 124 neutrons, and 84 electrons undergoes alpha decay, a lead atom would be produced with 82 protons, 122 neutrons, and 84 electrons together with an alpha particle having two protons and two neutrons.
Answer:
Ag⁺(aq) + Cl⁻(aq) ==> AgCl(s)
Explanation:
The net ionic equation can be described as the equation that contains only those species which would be participated in the chemical reaction. The spectator ions are the type of the ions that are present in both sides of the chemical equation these ions could not be present in the net ionic equation
First, it is easiest if you write the compete molecular equation:
AgNO₃(aq) + KCl(aq) ⇔ AgCl(s) + KNO₃(aq)
we look up which compounds are soluble (aq) and which are not (s). In this case, silver chloride (AgCl) is not soluble. Thus, the net ionic equation is...
Ag⁺(aq) + Cl⁻(aq) ==> AgCl(s)
The answer Fam is B) Models