The last one is correct (D)
If current is passed through two parallel conductors in the same direction and the conductors are placed near each other, they will attract each other.
<h3>What is electric current?</h3>
Electric current can be defined as the flow of electrons.
Since electrons are easily removed from atom and are very mobile, the flow of electrons constitute an electric current.
Materials which allow electric current to flow through them are known as conductors. Examples of conductors are metals, and electrolytes.
On the other hand, materials which do not allow electric current to pass through them are known as insulators. Examples of insulators are wood and rubber.
The flow of current is known as electricity.
Parallel conductors with current flowing through them in the same direction are attracted to each other as a result of a magnetic field produced by the flow of current.
In conclusion, conductors allow electric current to pass through and the flow of current through a conductor produces a magnetic field.
Learn more about parallel conductors at: brainly.com/question/17148082
#SPJ1
The de Broglie wavelength
m
We know that
de Broglie wavelength =
m
<h3>
What is de Broglie wavelength?</h3>
According to the de Broglie equation, matter can behave like waves, much like how light and radiation do, which are both waves and particles. A beam of electrons can be diffracted just like a beam of light, according to the equation. The de Broglie equation essentially clarifies the notion of matter having a wavelength.
Therefore, whether a particle is tiny or macroscopic, it will have a wavelength when examined.
The wave nature of matter can be seen or observed in the case of macroscopic objects.
To learn more about de Broglie wavelength with the given link
brainly.com/question/17295250
#SPJ4
Solid to liquid
Liquid to solid
By adding or removing heat energy aka thermal energy
Answer:
d= 1.56 m
Explanation:
In order to have a constructive interference, the path difference between the sources of the sound, must be equal to an even multiple of the semi-wavelength, as follows:
⇒ d = d₂ - d₁ = 2n*(λ/2)
The minimum possible value for this distance, is when n=1, as it can be seen here:
dmin = λ
In any wave, there exists a fixed relationship between the wave speed, the frequency and the wavelength:
v = λ*f
If v = vsound = 343 m/s, and f = 220 1/s, we can solve for λ:
λ =
⇒ dmin =λ = 1.56 m