Answer:
Yes. Towards the center. 8210 N.
Explanation:
Let's first investigate the free-body diagram of the car. The weight of the car has two components: x-direction: towards the center of the curve and y-direction: towards the ground. Note that the ground is not perpendicular to the surface of the Earth is inclined 16 degrees.
In order to find whether the car slides off the road, we should use Newton's Second Law in the direction of x: F = ma.
The net force is equal to 
Note that 95 km/h is equal to 26.3 m/s.
This is the centripetal force and equal to the x-component of the applied force.

As can be seen from above, the two forces are not equal to each other. This means that a friction force is needed towards the center of the curve.
The amount of the friction force should be 
Qualitatively, on a banked curve, a car is thrown off the road if it is moving fast. However, if the road has enough friction, then the car stays on the road and move safely. Since the car intends to slide off the road, then the static friction between the tires and the road must be towards the center in order to keep the car in the road.
Answer:
Work and Kinetic Energy
A B
3. A 0.180 kg balls falls 2.5 m. How much work does the force of gravity do on the ball? 4.41 J
4. A forklift raises a box 1.2 m doing 7.0 kJ of work on it. What is the mass of the box? 595.24 kg
5. How much work does the force of gravity do when a 25 N object falls a distance of 3.5 m? 87.5 J
Explanation:
To answer the specific problem, the balloon contains 480kg
of helium. I am hoping that this answer has satisfied your query and it will be
able to help you, and if you would like, feel free to ask another question.
Well you have to minus the 4.5 to 5.2 and the answer to that would be -11.5 and calculated that to be 4.5