Answer:
tortoise distance w.r.t sloth is 28.08 m further
Explanation:
given data
average speed v1 = 0.037 m/s
walking speed v2 = 0.076 m/s
time t = 12 min = 720 seconds
to find out
how much tortoise have gone wrt sloth
solution
we find here first tortoise walk that is
distance d1 = v2 × t
distance d1 = 0.076 × 720
distance d1 = 54.72 m
and sloth walk distance
distance d2 = v1 × t
distance d2 = 0.037 × 720
distance d2 = 26.64 m
and so
tortoise distance w.r.t sloth = d1 - d2
tortoise distance w.r.t sloth = 54.72 - 26.64 = 28.08
tortoise distance w.r.t sloth is 28.08 m further
Answer:
72.53 mi/hr
Explanation:
From the question given above, the following data were obtained:
Vertical distance i.e Height (h) = 8.26 m
Horizontal distance (s) = 42.1 m
Horizontal velocity (u) =?
Next, we shall determine the time taken for the car to get to the ground.
This can be obtained as follow:
Height (h) = 8.26 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
8.26 = ½ × 9.8 × t²
8.26 = 4.9 × t²
Divide both side by 4.9
t² = 8.26 / 4.9
Take the square root of both side by
t = √(8.26 / 4.9)
t = 1.3 s
Next, we shall determine the horizontal velocity of the car. This can be obtained as follow:
Horizontal distance (s) = 42.1 m
Time (t) = 1.3 s
Horizontal velocity (u) =?
s = ut
42.1 = u × 1.3
Divide both side by 1.3
u = 42.1 / 1.3
u = 32.38 m/s
Finally, we shall convert 32.38 m/s to miles per hour (mi/hr). This can be obtained as follow:
1 m/s = 2.24 mi/hr
Therefore,
32.38 m/s = 32.38 m/s × 2.24 mi/hr / 1 m/s
32.38 m/s = 72.53 mi/hr
Thus, the car was moving at a speed of
72.53 mi/hr.
Answer:
Part 1
20 N
Part 2
0.4 m/s²
Part 3
4 m/s
Explanation:
The force which pulls the sled right = 50 N
The friction force exterted towards left by the snow = -30 N
The mass of the sled = 50 kg
Part 1
The sum of the forces on the sled, F = 50 N + (-30) N = 20 N
Part 2
The acceleration of the sled is given as follows;
F = m·a
Where;
m = The mass of the sled
a = The accelertion
a = F/m
∴ a = (20 N)/(50 kg) = 0.4 m/s²
The acceleration of the sled, a = 0.4 m/s²
Part 3
The initial velocity of the sled, u = 2 m/s
The kinematic equation of motion to determine the speed of the sled is v = u + a·t
The speed, <em>v</em>, of the sled after t = 5 seconds is therefore;
v = 2 m/s + 0.4 m/s² × 5 s = 4 m/s.
Answer:
6 V
Explanation:
We can solve the problem by using Ohm's law:

where
V is the voltage in the circuit
R is the resistance
I is the current
In this problem, we know the current,
, and the resistance,
, therefore we can find the voltage in the circuit:

The pressure exerted by a fluid solely relies on the depth or height of the fluid, its density, and the gravitational constant. These three are related in the equation:
Pressure = density x g x height
In the problem, point A is within the block inside the tank. The water above the block is assumed to be 0.6 meters. This gives a point A pressure of:
P = 1000 kg/m^3 * 9.81 m/s^2 * 0.6 m = 5,886 Pa or 5.88KPa