3.37 x 10¹⁰ molecules
Explanation:
Given parameters:
Volume of water = 1pL = 1 x 10⁻¹²L
Density of water = 1.00g/mL = 1000g/L
Unknown:
Number of water molecules = ?
Solution:
To solve this problem, we first find the mass of the water molecule in the inkjet.
Mass of water = density of water x volume of water
Then, the number of molecules can be determined using the expression below:
number of moles =
Number of molecules = number of moles x 6.02 x 10²³
Solving:
Mass of water = 1 x 10⁻¹² x 1000 = 1 x 10⁻⁹g
Number of moles:
Molar mass of H₂O = 2 + 16 = 18g/mol
Number of moles = = 5.6 x 10⁻¹⁴moles
Number of molecules = 5.6 x 10⁻¹⁴ x 6.02 x 10²³ = 33.7 x 10⁹
= 3.37 x 10¹⁰ molecules
Learn more:
Number of molecules brainly.com/question/4597791
#learnwithBrainly
The answer is B. A guitar generally produces sound waves that propagate when the strings are strummed. The strings are displaced through the vibrations caused by contact of the hand and the guitar. You will also notice the vibrations by looking closely to the string. Wave particles continuously collide with each other to make a sustaining or prolonging sound.
The balanced chemical reaction for the described reaction above is,
Na2CO3 + 2HCl ---> 2NaCl + H2CO3
From the reaction, 1 mole of Na2CO3 is needed to produce 2 moles of NaCl. In terms of mass, 106 grams of Na2CO3 are needed to produce 116.9 grams of NaCl. From this,
(23.4 g NaCl) x (106 g Na2CO3 / 116.9 NaCl = 21.22 g Na2CO3
Thus, approximately 21.22 g Na2CO3 is needed for the desired reaction.