Answer:
e= 50 J/kg
Explanation:
Given that
Speed ,v= 10 m/s
Diameter of the turbine = 90 m
Density of the air ,ρ = 1.25 kg/m³
We know that mechanical energy given as

That is why mechanical energy per unit mass will be

Now by putting the values in the above equation we get

e= 50 J/kg
That why the mechanical energy unit mass will be 50 J/kg.
Answer: Doctrine of ratification
Explanation:Doctrine of ratification tries to show that a person who is taking so much a time to complain has indicated that he agrees even if he doesn't without a written consent. This is to eliminate undue waste of time in business, legal an other proceedings requiring consent of both parties.
Doctrine of ratification can either be implied or expressed
Implied ratification is the type of ratification where a persons actions or body language can be seen that he has accepted.
Express ratification is a ratification where a person intentionally accept by showing either through written or verbally.
Answer:
A centrifugal clutch works, as the name suggests, through centrifugal force.
One of the most common methods is by mounting the clutch onto the parallel or taper crank shaft of the engine.
When the crank shaft rotates the shaft of the clutch rotates at the same speed as the engine
Closest one is A. “The largest Vehicle”
Answer:
Your question has some missing information below is the missing information
Given that ( specific heat of fluid A = 1 kJ/kg K and specific heat of fluid B = 4 kJ/kg k )
answer : 300 kW , 95°c
Explanation:
Given data:
Fluid A ;
Temperature of Fluid ( Th1 ) = 420° C
mass flow rate (mh) = 1 kg/s
Fluid B :
Temperature ( Tc1) = 20° C
mass flow rate ( mc ) = 1 kg/s
effectiveness of heat exchanger = 75% = 0.75
<u>Determine the heat transfer rate and exit temperature of fluid</u> <u>B</u>
Cph = 1000 J/kgk
Cpc = 4000 J/Kgk
Given that the exit temperatures of both fluids are not given we will apply the NTU will be used to determine the heat transfer rate and exit temperature of fluid B
exit temp of fluid B = 95°C
heat transfer = 300 kW
attached below is a the detailed solution