Answer:
Amazing Thanks. What about u?
Explanation:
Answer:

Explanation: Two samples of blood that have different masses and temperatures and are mixed, we have to find the final temperature of the mixture. the final temperature can be found using the following formula:

(1) Formula basically tells us that the product of mass and temperature remains constant throughout, so the addition of two products of the two separate blood samples would be equal to the product of final temperature and the total mass of the mixture. Mathematically this means that:

Using (1) and plugging in the corresponding values, we get the answer as follows:
Answer:
1) λ < 2d, 2) nfrared imaging technique, 3) each color there is a different index of refraction
Explanation:
We are going to answer the three questions
1) When x-rays pass through matter in order to be dispersed, their wavelength must be of the order of the length of separation in the atoms and molecules of the body, in solid bones this length is similar and they scatter and reflect the x-rays therefore they can be observed, the fat and the soft tissue have a much greater separation therefore the x-rays cannot be reflected and consequently it is not observable by this technique.
2) At airports they use the infrared imaging technique, where the image is taken for the infrared wavelength, which is the heat part of the electromagnetic spectrum; consequently, when the image is viewed, the hottest areas appear brighter and, since when a person has a virus, his temperature rises, his temperature rises, it is possible to observe people with a higher temperature.
3) when white light hits a prism it is refracted with the equation
n₁ sin θ₁ = n₂ sin θ₂
where the incidence of refraction depends on the wavelength, therefore for each color there is a different index of refraction and consequently the light is separated in its different colors.
<span>Ohm's law deals with the relation between
voltage and current in an ideal conductor. It states that: Potential difference
across a conductor is proportional to the current that pass through it. It is
expressed as V=IR. The correct answer from the choices listed above is option A. The resistance has increased. </span>