<span>3.78 m
Ignoring resistance, the ball will travel upwards until it's velocity is 0 m/s. So we'll first calculate how many seconds that takes.
7.2 m/s / 9.81 m/s^2 = 0.77945 s
The distance traveled is given by the formula d = 1/2 AT^2, so substitute the known value for A and T, giving
d = 1/2 A T^2
d = 1/2 9.81 m/s^2 (0.77945 s)^2
d = 4.905 m/s^2 0.607542 s^2
d = 2.979995 m
So the volleyball will travel 2.979995 meters straight up from the point upon which it was launched. So we need to add the 0.80 meters initial height.
d = 2.979995 m + 0.8 m = 3.779995 m
Rounding to 2 decimal places gives us 3.78 m</span>
The answer is B for sure !
Answer:
Part a)

Part b)

Part c)

Part d)

Explanation:
Part a)
While bucket is falling downwards we have force equation of the bucket given as

for uniform cylinder we will have

so we have


now we have




now we have


Part b)
speed of the bucket can be found using kinematics
so we have



Part c)
now in order to find the time of fall we can use another equation



Part d)
as we know that cylinder is at rest and not moving downwards
so here we can use force balance



For part a)
Since the conical surface is not exposed to the radiation coming from the walls only from the circular plate and assuming steady state, the temperature of the conical surface is also equal to the temperature of the circular plate. T2 = 600 K
For part b)
To maintain the temperature of the circular plate, the power required would be calculated using:
Q = Aσ(T₁⁴ - Tw⁴)
Q = π(500x10^-3)²/4 (5.67x10^-8)(600⁴ - 300⁴)
Q = 5410.65 W