I believe you're talking about displacement. It's a directional vector that depicts the movement of a point between two instances.
Horizontal distance covered by a projectile is X = Vix *T
where Vix is the initial horizontal component of velocity and T is time taken by the projectile
Vix = ViCos theta
In question they said that initial velocity and angle is same on earth and moon
so Vix would remains same
now let's see about time taken T
time taken to reach the highest point
Vfy = Viy +gt
at highest point vertical velocity become zero so Vfy =0
0 = Vi Sin theta + gt
t = Vi Sintheta /g
Total time taken to land will be twice of that
On earth
Te= 2t
Te = 2Sinθ/g
on moon g is one-sixth of g(earth)
Tm = 2Sinθ/(g/6)
Tm = 6(2Sinθ/g)
Tm = 6Te
so total time taken by the projectile on moon will be six times the time taken on earth
From first equation X = Vix*T
we can see that X will also be 6 times on moon than earth
so projectile will cover 6 times distance on moon than on earth
Answer:
v =2.02
Explanation:
v^2=0.05-4.9
v^2=-4.85
square root both side
v=2.02
^^^^this is a not a perfect square
It is a solid when is frozen and a liquid when it melts
Answer:
7 / 1
Explanation:
The ratio of their amplitude = one-seventh and the ratio of their amplitude = the ratio of their wavelength
Ax / Ay = λx / λy = 1 / 7
λy / λx = 7 / 1