Answer:
a) 10.7° ≈ 11°
b) 0.19
Explanation:
If the road is banked at an angle, without seeking the help of friction, (i.e. frictionless road), the forces acting on the car are shown in the attached free body diagram to the question
In the y - direction
mg = N cos θ (eqn 1)
mg = weight of the car.
N = normal reaction of the plane on the car
And in the direction parallel to the inclined plane,
(mv²/r) = N sin θ (eqn 2)
(mv²/r) = force keeping the car in circular motion
Divide (eqn 2) by (eqn 1)
(v²/gr) = Tan θ
v = velocity of car = 60 km/h = 16.667 m/s
g = acceleration due to gravity
r = 150 m
(16.667²/(9.8×150)) = Tan θ
θ = Tan⁻¹ (0.18896)
θ = 10.7° ≈ 11°
b) In the absence of banking, the frictional force on the road has to balance the force keeping the car in circular motion
That is,
Fr = (mv²/r)
Fr = μN = μ mg
μ mg = mv²/r
μ = (v²/gr) = (16.667²/(9.8×150)) = 0.19
Hope this Helps!!!
Answer:
no
Explanation:
think of the sphere like earth, light isnt on both sides during day. Its just like a sphere it wont be fully light.
true. Because the speed of an object can change from one instant to the next, dividing the total distance covered by the time of travel gives. average speed.
Explanation:
they'll dewwel jss q.v hewn red f quill DC noo