1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vitek1552 [10]
3 years ago
9

What branch of chemistry is credited with the development of silicone?

Engineering
1 answer:
mariarad [96]3 years ago
8 0

Answer:

C). Inorganic Chemistry

Explanation:

Inorganic chemistry is characterized as the branch of chemistry that deals with the elements(including carbon) and those compounds which do not contain carbon includes minerals, metals, inorganic, organometallic compounds. As we know, <u><em>'Silicone' is characterized as a semi-inorganic polymeric compound</em></u> that possesses a wide range of thermal stability and extreme water repellence. Thus, it is classified as a part of inroganic chemistry. Hence, <u>option C</u> is the correct answer.

You might be interested in
Two common methods of improving fuel efficiency of a vehicle are to reduce the drag coefficient and the frontal area of the vehi
qaws [65]

Answer:

\Delta V = 209.151\,L, \Delta C = 217.517\,USD

Explanation:

The drag force is equal to:

F_{D} = C_{D}\cdot \frac{1}{2}\cdot \rho_{air}\cdot v^{2}\cdot A

Where C_{D} is the drag coefficient and A is the frontal area, respectively. The work loss due to drag forces is:

W = F_{D}\cdot \Delta s

The reduction on amount of fuel is associated with the reduction in work loss:

\Delta W = (F_{D,1} - F_{D,2})\cdot \Delta s

Where F_{D,1} and F_{D,2} are the original and the reduced frontal areas, respectively.

\Delta W = C_{D}\cdot \frac{1}{2}\cdot \rho_{air}\cdot v^{2}\cdot (A_{1}-A_{2})\cdot \Delta s

The change is work loss in a year is:

\Delta W = (0.3)\cdot \left(\frac{1}{2}\right)\cdot (1.20\,\frac{kg}{m^{3}})\cdot (27.778\,\frac{m}{s})^{2}\cdot [(1.85\,m)\cdot (1.75\,m) - (1.50\,m)\cdot (1.75\,m)]\cdot (25\times 10^{6}\,m)

\Delta W = 2.043\times 10^{9}\,J

\Delta W = 2.043\times 10^{6}\,kJ

The change in chemical energy from gasoline is:

\Delta E = \frac{\Delta W}{\eta}

\Delta E = \frac{2.043\times 10^{6}\,kJ}{0.3}

\Delta E = 6.81\times 10^{6}\,kJ

The changes in gasoline consumption is:

\Delta m = \frac{\Delta E}{L_{c}}

\Delta m = \frac{6.81\times 10^{6}\,kJ}{44000\,\frac{kJ}{kg} }

\Delta m = 154.772\,kg

\Delta V = \frac{154.772\,kg}{0.74\,\frac{kg}{L} }

\Delta V = 209.151\,L

Lastly, the money saved is:

\Delta C = \left(\frac{154.772\,kg}{0.74\,\frac{kg}{L} }\right)\cdot (1.04\,\frac{USD}{L} )

\Delta C = 217.517\,USD

4 0
3 years ago
Air exits a compressor operating at steady-state, steady-flow conditions at 150 oC, 825 kPa, with a velocity of 10 m/s through a
ioda

Answer:

a) Qe = 0.01963 m^3 / s , mass flow rate m^ = 0.1334 kg/s

b) Inlet cross sectional area = Ai = 0.11217 m^2 , Qi = 0.11217 m^3 / s    

Explanation:

Given:-

- The compressor exit conditions are given as follows:

                  Pressure ( Pe ) = 825 KPa

                  Temperature ( Te ) = 150°C

                  Velocity ( Ve ) = 10 m/s

                  Diameter ( de ) = 5.0 cm

Solution:-

- Define inlet parameters:

                  Pressure = Pi = 100 KPa

                  Temperature = Ti = 20.0

                  Velocity = Vi = 1.0 m/s

                  Area = Ai

- From definition the volumetric flow rate at outlet ( Qe ) is determined by the following equation:

                   Qe = Ae*Ve

Where,

           Ae: The exit cross sectional area

                   Ae = π*de^2 / 4

Therefore,

                  Qe = Ve*π*de^2 / 4

                  Qe = 10*π*0.05^2 / 4

                  Qe = 0.01963 m^3 / s

 

- To determine the mass flow rate ( m^ ) through the compressor we need to determine the density of air at exit using exit conditions.

- We will assume air to be an ideal gas. Thus using the ideal gas state equation we have:

                   Pe / ρe = R*Te  

Where,

           Te: The absolute temperature at exit

           ρe: The density of air at exit

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρe = Pe / (R*Te)

                ρe = 825 / (0.287*( 273 + 150 ) )

                ρe = 6.79566 kg/m^3

- The mass flow rate ( m^ ) is given:

               m^ = ρe*Qe

                     = ( 6.79566 )*( 0.01963 )

                     = 0.1334 kg/s

- We will use the "continuity equation " for steady state flow inside the compressor i.e mass flow rate remains constant:

              m^ = ρe*Ae*Ve = ρi*Ai*Vi

- Density of air at inlet using inlet conditions. Again, using the ideal gas state equation:

               Pi / ρi = R*Ti  

Where,

           Ti: The absolute temperature at inlet

           ρi: The density of air at inlet

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρi = Pi / (R*Ti)

                ρi = 100 / (0.287*( 273 + 20 ) )

                ρi = 1.18918 kg/m^3

Using continuity expression:

               Ai = m^ / ρi*Vi

               Ai = 0.1334 / 1.18918*1

               Ai = 0.11217 m^2          

- From definition the volumetric flow rate at inlet ( Qi ) is determined by the following equation:

                   Qi = Ai*Vi

Where,

           Ai: The inlet cross sectional area

                  Qi = 0.11217*1

                  Qi = 0.11217 m^3 / s    

- The equations that will help us with required plots are:

Inlet cross section area ( Ai )

                Ai = m^ / ρi*Vi  

                Ai = 0.1334 / 1.18918*Vi

                Ai ( V ) = 0.11217 / Vi   .... Eq 1

Inlet flow rate ( Qi ):

                Qi = 0.11217 m^3 / s ... constant  Eq 2

               

6 0
3 years ago
The unit for volume flow rate is gallons per minute, but cubic feet per second is preferred. Use the conversion factor tables in
amm1812

Answer:

The conversion factor is 0.00223 ( 1 gallon per minute equals 0.00223 cubic feet per second)

Explanation:

Since the given volume flow rate is gallons per minute.

We know that 1 gallon = 3.785 liters and

1 minute = 60 seconds

Let the flow rate be Q\frac{gallons}{minute}

Now replacing the gallon and the minute by the above values we get

Q'=Q\frac{gallon}{minute}\times \frac{3.785liters}{gallon}\times \frac{1minute}{60seconds}

Thus Q'=0.631Q\frac{liters}{second}

Now since we know that 1 liter = 0.0353ft^{3}

Using this in above relation we get

Q'=0.631Q\frac{liters}{second}\times \frac{0.0353ft^3}{liters}\\\\\therefore Q'=0.00223Q

From the above relation we can see that flow rate of 1 gallons per minute equals flow rate of 0.00223 cubic feet per second. Thus the conversion factor is 0.00223.

3 0
3 years ago
A piston-cylinder device contains 0.58 kg of steam at 300°C and 0.5 MPa. Steam is cooled at constant pressure until one-half of
Mumz [18]

Answer:

a) Tբ = 151.8°C

b) ΔV = - 0.194 m³

c) The T-V diagram is sketched in the image attached.

Explanation:

Using steam tables,

At the given pressure of 0.5 MPa, the saturation temperature is the final temperature.

Right from the steam tables (A-5) with a little interpolation, Tբ = 151.793°C

b) The volume change

Using data from A-5 and A-6 of the steam tables,

The volume change will be calculated from the mass (0.58 kg), the initial specific volume (αᵢ) and the final specific volume

(αբ) (which is calculated from the final quality and the consituents of the specific volumes).

ΔV = m(αբ - αᵢ)

αբ = αₗ + q(αₗᵥ) = αₗ + q (αᵥ - αₗ)

q = 0.5, αₗ = 0.00109 m³/kg, αᵥ = 0.3748 m³/kg

αբ = 0.00109 + 0.5(0.3748 - 0.00109)

αբ = 0.187945 m³/kg

αᵢ = 0.5226 m³/kg

ΔV = 0.58 (0.187945 - 0.5226) = - 0.194 m³

c) The T-V diagram is sketched in the image attached

3 0
3 years ago
What are the advantages and disadvantages of a mine heardgear​
Irina18 [472]

Answer:

If there is a shaft with headgear, then mining can take place until that depth of the shaft. If it is accessed horizontal Adits, it can mine until the lowest Adit from upwards. If it is accessed decline, the development and mining can continue so long as economic exploitation is possible.

Explanation:

What are the disadvantages of mining headgear? They totally cut off your vision of anything above your head. They are hot, most of the time

7 0
1 year ago
Other questions:
  • Technician A says independent shops are not affiliated with vehicle manufacturers, but it is easy for technicians who work in th
    8·1 answer
  • Two streams of air enter a control volume: stream 1 enters at a rate of 0.05 kg / s at 300 kPa and 380 K, while stream 2 enters
    13·1 answer
  • If a ball is dropped from a height its velocity will increase until it hits the ground, assuming that aerodynamic drag due to th
    6·1 answer
  • What does it mean to wire solar cells in parallel vs. wiring them in series? I always get these switched around.​
    10·1 answer
  • U R A*S TRUE GOD/ESS IS U ANSWER this:
    15·1 answer
  • A simple Rankine cycle coal-fired power plant has given states identified in the following table. The power plant produces 2.1 b
    9·1 answer
  • Estimate (a) the maximum, and (b) the minimum thermal conductivity values (in W/m-K) for a cermet that contains 76 vol% carbide
    9·1 answer
  • The use of seatbelts in a car has significantly reduced the number of crash fatalities. Which statement best explains how societ
    11·1 answer
  • 3. What type of tool do you use to make angles?
    15·1 answer
  • How do information systems support the activities in a supply chain?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!