Answer:

Explanation:
We usually approximate the density of water to about
at room temperature. In terms of the precise density of water, this is not the case, however, as density is temperature-dependent.
The density of water decreases with an increase in temperature after the peak point of its density. The same trend might be spotted if the temperature of water is decreased from the peak point.
This peak point at which the density of water has the greatest value is usually approximated to about
. For your information, I'm attaching the graph illustrating the function of the density of water against temperature where you could clearly indicate the maximum point.
To a higher precision, the density of water has a maximum value at
, and the density at this point is exactly
.
Answer:
Required number is the vertical coordinate of the intersection point of a line at 60°C with the graph of the KNO₃.
To solve for the number of moles, we simply have to use the Avogadros number which states that there are 6.022 x 10^23 molecules per mole. Therefore:
number of moles = 6.67 X 10^40 chlorine molecules / (6.022 x 10^23 molecules / mole)
number of moles = 1.108 x 10^17 moles
Mercury naturally exists in Liquid state.
On Condensing it can exist in Solid state as well.
Hope it helps...
Regards;
Leukonov/Olegion.