pH of the solution after 24. 00 ml of the hcl has been added is 12.87
millimoles NaOH = mL x M = 24.00 mL x 0.25 M = 6.00
millimoles HCl = 24.00 mL x 0.10 M = 2.40
total volume = 48.00 mL
.................................NaOH + HCl ==>NaCl + H2O
initial.........................6.00.........0............0.........0
added.....................................2.40............................
change.................... -2.40......-2.40.........+2.40.... +2.40
equilibrium.................3.60.........0..............2.40.......2.40
The NaCl contributes nothing to the pH of the final solution. The pH is determined by the excess of NaOH present. (NaOH) = millimoles/mL = 3.60/48.00 = 0.075 M = (OH^-)
pOH = -log (OH^-). Then
pOH = -log (0.075)
pOH =1.1249
As we know,
pH + pOH = pKw = 14.00
pH=14-pOH
pH=14-1.1249
pH=12.87
<h3>
What is pH?</h3>
pH is a logarithmic measure of an aqueous solution's hydrogen ion concentration. pH = -log[H+], where log is the base 10 logarithm and [H+] is the concentration of hydrogen ions in moles per liter.
The pH of an aqueous solution describes how acidic or basic it is, with a pH less than 7 being acidic and a pH greater than 7 being basic. A pH of 7 is regarded as neutral (e.g., pure water). pH values typically range from 0 to 14, though very strong acids may have a negative pH and very strong bases may have a pH greater than 14.
Learn more about pH:
brainly.com/question/491373
#SPJ4
Potassium outermost electron occupy "4s" orbital
I'm pretty sure it's Newton's
Answer:
5000 and
indicate that there is more B than A at equilibrium
Explanation:
For the given reaction: ![K=\frac{[B]}{[A]}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D)
where [B] and [A] represents equilibrium concentration B and A respectively. K represents equilibrium constant
More B than A at equilibrium means, [B] > [A]
So, ![K=\frac{[B]}{[A]}>1](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D%3E1)
As, both 5000 and
are greater than 1 therefore these two K values indicate that there is more B than A at equilibrium
Answer: 0.8541 grams of HCl will be required.
Explanation: Moles can be calculated by using the formula:

Given mass of
= 0.610 g
Molar mass of
= 78 g/mol

Number of moles of
= 0.0078 moles
The reaction between
and HCl is a type of neutralization reaction because here acid and base are reacting to form an salt and also releases water.
Chemical equation for the above reaction follows:

By Stoichiometry,
1 mole of
reacts with 3 moles of HCl
So, 0.0078 moles of
will react with
= 0.0234 moles
Mass of HCl is calculated by using the mole formula, we get
Molar mass of HCl = 36.5 g/mol
Putting values in the equation, we get
Mass of HCl required will be = 0.8541 grams