C. hydrogen accreted onto a white dwarf from a close companion rapidly fuses to helium, releasing a large amount of energy.
The accreted material, composed mainly of hydrogen, is compacted on the surface of the white dwarf due to the intense gravitational force on that place. As material accumulates, The white dwarf becomes increasingly hot, until it reaches the critical temperature for ignition of nuclear fusion.
Answer:
I'm pretty sure it's all of them i'm not completely sure though hope it helps anyways! :)
The electron is accelerated through a potential difference of

, so the kinetic energy gained by the electron is equal to its variation of electrical potential energy:

where
m is the electron mass
v is the final speed of the electron
e is the electron charge

is the potential difference
Re-arranging this equation, we can find the speed of the electron before entering the magnetic field:

Now the electron enters the magnetic field. The Lorentz force provides the centripetal force that keeps the electron in circular orbit:

where B is the intensity of the magnetic field and r is the orbital radius. Since the radius is r=25 cm=0.25 m, we can re-arrange this equation to find B:
Sound waves are known to be the one that's not considered as a type of electromagnetic energy. As for microwaves and x-rays, they tend to share the same frequencies that can be considered as electromagnetic, and sound waves have a different frequency than them.