Answer:
pour the rock salt mixture throught a filter made from paper and allow the liquid to filtrate .
Explanation:
Separating Sand and Salt
Probably the easiest method to separate the two substances is to dissolve salt in water, pour the liquid away from the sand, and then evaporate the water to recover the salt.
Answer : The pH of the solution is, 9.63
Explanation : Given,
The dissociation constant for HCN = 
First we have to calculate the moles of HCN and NaCN.

and,

The balanced chemical reaction is:

Initial moles 0.1116 0.0461 0.08978
At eqm. (0.1116-0.0461) 0 (0.08978+0.0461)
0.0655 0.1359
Now we have to calculate the pH of the solution.
Using Henderson Hesselbach equation :
![pH=pK_a+\log \frac{[Salt]}{[Acid]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BSalt%5D%7D%7B%5BAcid%5D%7D)
Now put all the given values in this expression, we get:


Therefore, the pH of the solution is, 9.63
Answer:
The abundance of first isotope is 69.15 %
The abundance of second isotope is 30.85 %
Explanation:
The formula for the calculation of the average atomic mass is:
Given that:
Since the element has only 2 isotopes, so the let the percentage of first be x and the second is 100 -x.
For first isotope:
% = x %
Mass = 62.9296 u
For second isotope:
% = 100 - x
Mass = 64.9278 u
Given, Average Mass = 63.546 u
Thus,
Solving for x, we get that:
x = 69.15 %
<u>The abundance of first isotope is 69.15 %</u>
<u>The abundance of second isotope is 100 - 69.15 % = 30.85 %</u>
D, Urine.
Just google what sweat is made of and it gives you all of the answers except for urine. Also you’d probably smell really bad if your sweat had urine in it. Hope this helps! :)
Answer:
pH = 2.21
Explanation:
Hello there!
In this case, according to the reaction between NaF and HCl as the latter is added to the buffer:

It is possible for us to see how more HF is formed as HCl is added and therefore, the capacity of this HF/NaF-buffer is diminished as it turns acid. Therefore, it turns out feasible for us to calculate the consumed moles of NaF and the produced moles of HF due to the change in moles induced by HCl:

Next, we calculate the resulting concentrations to further apply the Henderson-Hasselbach equation:
![[HF]=\frac{0.450mol}{1.0L} =0.450M](https://tex.z-dn.net/?f=%5BHF%5D%3D%5Cfrac%7B0.450mol%7D%7B1.0L%7D%20%3D0.450M)
![[NaF]=\frac{0.050mol}{1.0L} =0.050M](https://tex.z-dn.net/?f=%5BNaF%5D%3D%5Cfrac%7B0.050mol%7D%7B1.0L%7D%20%3D0.050M)
Now, calculated the pKa of HF:

We can proceed to the HH equation:
![pH=pKa+log(\frac{[NaF]}{[HF]} )\\\\pH=3.17+log(\frac{0.05M}{0.45M} )\\\\pH=2.21](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%28%5Cfrac%7B%5BNaF%5D%7D%7B%5BHF%5D%7D%20%29%5C%5C%5C%5CpH%3D3.17%2Blog%28%5Cfrac%7B0.05M%7D%7B0.45M%7D%20%29%5C%5C%5C%5CpH%3D2.21)
Best regards!