Answer:
A population or community research line can be carried out, wherever at a certain point in time, regardless of whether it is a cross-sectional study.
In addition, the people who would be the population to be studied or the object of study might or might not know the cause of the study (blind) while the researcher could be experimentally participatory.
Explanation:
They are prevalence studies, in which the presence of a health condition or state is determined in a well-defined population and in a determined time frame: one day, one week, a particular moment in life, even if it does not temporarily coincide in all the subjects (for example, the blood pressure figures at the time of entering the school or at the beginning of the holidays, the prevalence of diabetes in hospitalized patients on a given day, etc.).
They are like "photographs" of a state of affairs at a given moment. The simultaneous determination of what is understood by exposure and event does not allow defining causality.
<span>A chemical bond is a lasting attraction between atoms, ions or molecules that enables the formation of chemical compounds. The bond may result from the electrostatic force of attraction between oppositely charged ions as in ionic bonds; or through the sharing of electrons as in covalent bonds. The strength of chemical bonds varies considerably; there are "strong bonds" or "primary bond" such as metallic, covalent or ionic bonds and "weak bonds" or "secondary bond" such as Dipole-dipole interaction, the London dispersion force and hydrogen bonding.</span>
Pan 4: theyre the smallest and most broken down :)
Answer:
12 moles of CO₂.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
CO₂ + H₂O —> H₂CO₃
From the balanced equation above,
1 mole of CO₂ dissolves in water to produce 1 mole of H₂CO₃.
Finally, we shall determine the number of moles of CO₂ that will dissolve in water to produce 12 moles of H₂CO₃. This can be obtained as follow:
From the balanced equation above,
1 mole of CO₂ dissolves in water to produce 1 mole of H₂CO₃.
Therefore, 12 moles of CO₂ will also dissolve in water to produce 12 moles of H₂CO₃.
Thus, 12 moles of CO₂ is required.
Determining on the temperature, ice could melt, water could freeze or evaporate. Just an example.