Chlorine is a halogen and is very reactive and unstable. If released in an elemental form (Cl2), it would react with other substances immediately. However, <span>chlorofluorocarbons (CFCs) which contain chlorine are unreactive and when released they eventually end up in the upper atmosphere still "intact". In the upper atmosphere, sunlight is more intense and is able to break apart CFC, releasing the highly reactive chlorine which in turns destroys ozone which is more abundant in the upper atmosphere (stratosphere). </span>
The answer:
all that we search for is the number of mole of HCl and the number of mole of C2H6O
M(HCl) = 5.5g/ mole of HCl , so mole of HCl = 5.5/M(HCl), where M(HCl) is the molar mass.
M(HCl) = 1+ 36.5= 37.5
moles of HCl = 5.5/37.5=0.14
M(C2H6O) = 200g / moles of C2H6O, so moles of C2H6O=200g / M(C2H6O)
M(C2H6O)= 2x12+ 6 + 16=46,
moles of C2H6O=200g / 46 =<span>4.35 </span><span> moles
</span>
the sum of the moles is 0.14 + <span>4.35 </span> = 4.501 moles
finally, <span>The mole fraction of hcl in a solution prepared by dissolving 5.5 g of hcl in 200 g of c2h6o is 0.031
</span>
because it can be found by 0.14 / 4.501= 0.031
We will use the expression for freezing point depression ∆Tf
∆Tf = i Kf m
Since we know that the freezing point of water is 0 degree Celsius, temperature change ∆Tf is
∆Tf = 0C - (-3°C) = 3°C
and the van't Hoff Factor i is approximately equal to 2 since one molecule of KCl in aqueous solution will produce one K+ ion and one Cl- ion:
KCl → K+ + Cl-
Therefore, the molality m of the solution can be calculated as
3 = 2 * 1.86 * m
m = 3 / (2 * 1.86)
m = 0.80 molal
(a)- Time
(b)- Heat produced(i guess)
(c)- Material
this is what I think, hope it helps
And the significant amount of volume can be differed by its solitude