Answer: 244.05 J
Explanation:
To find speed at 30 m above the ground use equation:
V²=Vo²-2Gs
V0=31.4m/s
s=30m
G=9.81m/s²
-----------------------
V²=31.4²-2*9.81*30
V²=985.96+588.6
V²=1574.56
V=39.68m/s ---speed of arrow on 30 m obove the ground
Use equation for kinetic enrgy:
Ke=mV²/2
m=0.155kg
V=39.68m/s
-------------------------
Ke=0.155kg*(39.68m/s)²/2
Ke=0.155*1574.5/2
Ke=244.05J
Answer:
Explanation:
Given
Potential Energy is given by

And Force is given by

Particle will be at equilibrium when Potential Energy is either minimum or maximum

i.e.

So angular Frequency of small oscillation is given by

for 
we get 


Here's what you need to memorize for your exam tomorrow.
Distance = (speed) x (time) .
That's it. Memorize it.
-- If the question wants you to find speed, use it exactly in that form.
-- If the question wants you to find speed, then divide each side by (time)
and it says
. Time = (distance) / (speed) .
-- If the question wants you to find time, then divide each side by speed,
and it says
. Time = (distance) / (speed) .
So if you memorize that one equation ... Distance = (speed) x (time) ...
you can solve ANY problem to find distance, speed, or time.
On the sheet in the picture . . . . .
#2). The question is "How long ?". That's TIME that you have to find.
Use the equation in the form of
. TIME = (distance) / (speed)
. = (60 km) / (48 km/h)
. = 1.25 hours .
#3). This one wants you to find SPEED. Use the equation in the form of
. SPEED = (distance) / (time)
but be careful. The time has to be in hours. 55 minutes = 55/60 of an hour.
. SPEED = (distance) / (time)
. = (60 km) / (55/60 hour)
. = (60 x 60 km) / (55 hour)
. = 65.45 km/hr .
#4). This one wants you to find TIME. (It says "How long ?".)
It's two trips, so you have to find the time for each trip.
First trip: TIME = (distance)/(speed) = (24 km)/(65 km/hr) = 0.369 hr
Second trip: TIME = (distance)/(speed) = (50 km)/(80 km/hr) = 0.625 hr
Total time for both trips = (0.369 hr) + (0.625 hr) = 0.994 hour
Answer:
Natalie says that all things with mass have a gravitational field, but the force is very weak and cannot be perceived around small objects.
Explanation:
The force due to gravity is proportional to the mass of the object and inversely proportional to the square of the distance between objects. The Earth is so massive that the force due to its gravity is much greater than the force between objects on the counter.
If there were no friction, the objects might move toward each other, depending on what other masses were near them tending to cause them to move in other directions.
Natalie's explanation is about the best.
__
<em>Additional comment</em>
The universal gravitational constant was determined by Henry Cavendish in the late 18th century using lead balls weighing 1.6 pounds and 348 pounds. His experiment was enclosed in a large wooden box to minimize outside effects. While these masses are somewhat greater than those of a glue bottle and stapler, the experiment shows the force of gravity between "small" objects <em>can</em> be measured.