Answer: pH = 7.36. The pKa of H2PO4− is 7.21.
Explanation:
Answer:
5.2 x 10⁻⁴ M.
Explanation:
- The relationship between gas pressure and the concentration of dissolved gas is given by Henry’s law:
<em>P = kC</em>
where P is the partial pressure of the gaseous solute above the solution.
k is a constant (Henry’s constant).
C is the concentration of the dissolved gas.
- At two different pressures, there is two different concentrations of dissolved gases and is expressed in a relation as:
<em>P₁C₂ = P₂C₁,</em>
P₁ = 1.0 atm, C₁ = 6.8 x 10⁻⁴ mol/L.
P₂ = 0.76 atm, C₂ = ??? mol/L.
<em>∴ C₂ = (P₂C₁)/P₁ =</em> (0.76 atm)(6.8 x 10⁻⁴ mol/L)/(1.0 atm) = <em>5.168 x 10⁻⁴ mol/L ≅ 5.2 x 10⁻⁴ M.</em>
Explanation:
1 literThe total of water is equal to 1000.0 g of water
we need to find the molality of a solution containing 10.0 g of dissolved in Na₂S0₄1000.0 g of water
1. For that find the molar mass
Na: 2 x 22.99= 45.98
S: 32.07
O: 4 x 16= 64
The total molar mass is 142.05
We have to find the number of moles, y
To find the number of moles divide 10.0g by 142.05 g/mol.
So the number of moles is 0.0704 moles.
For the molarity, you need the number of moles divided by the volume. So, 0.0704 mol/1 L.
The molarity would end up being 0.0704 M
The molality of a solution containing 10.0 g of Na2SO4 dissolved in 1000.0 g of water is 0.0704 Mliter
Answer:
the solubility increases
Explanation:
The solubility of any ionic compound is due to the ionization of the compound and then the strong ion-dipole interactions acting between the ions and the solvent.
Thus, solubility also depends on the extent of the ionization of the salt.
The more the salt ionizes, the more there is ion-dipole interaction between the ions the solvent and more is the solubility.