The initial force between the two charges is given by:

where k is the Coulomb's constant, q1 and q2 the two charges, d their separation. Let's analyze now the other situations:
1. F
In this case, q1 is halved, q2 is doubled, but the distance between the charges remains d.
So, we have:

So, the new force is:

So the force has not changed.
2. F/4
In this case, q1 and q2 are unchanged. The distance between the charges is doubled to 2d.
So, we have:

So, the new force is:

So the force has decreased by a factor 4.
3. 6F
In this case, q1 is doubled and q2 is tripled. The distance between the charges remains d.
So, we have:

So, the new force is:

So the force has increased by a factor 6.
Answer:
Depending on where people are located in the world (Northern hemisphere, Southern hemisphere, etc) depends on the difference in direction (North, South, east, West) which is most likely why it'd look different.
Explanation:
I dunno if this is along the lines of an answer you're looking for, but hope this helps :)
Wave speed = frequency * wavelength
Wave speed = 4 * 25
Wave speed = 100 m/s
Answer:
Explanation:
parallel capacitances add directly
Series capacitances add by reciprocal of sum of reciprocals.
Ceq = [ C ] + [1 / (1/C + 1/C)] + [1 / (1/C + 1/C + 1/C)]
Ceq = [ C ] + [C / 2] + [C / 3]
Ceq = [ 6C/6 ] + [3C / 6] + [2C / 6]
Ceq = 11C/6
Answer:
Hope this helps you find the answer
Explanation:
The proteins, lipids, and polysaccharides that make up most of the food we eat must be broken down into smaller molecules before our cells can use them—either as a source of energy or as building blocks for other molecules.