The producers of an ecosystem make energy available to all the other living parts of an ecosystems. Consumers like humans eat the food that producers like plants made decomposers decompose dead plants and animals when they die like bacteria is a decomposer
The atom of alkaline earth metal has one more proton and one more electron than the alkali metal that is next to it to the left on the periodic table. Then the atomic number of the alkali metal is one unit less than the atomic number of the alkaline earth metal next to it
Answer:
0.01 moles of SrCO₃
Explanation:
In this excersise we need to propose the reaction:
K₂CO₃ + Sr(NO₃)₂ → 2KNO₃ + SrCO₃
As we only have data about the potassium carbonate we assume the strontium nitrite as the excess reactant.
1 mol of K₂CO₃ react to 1 mol of Sr(NO₃)₂ in order to produce 2 moles of potassium nitrite and 1 mol of strontium carbonate.
Ratio is 1:1. In conclussion,
0.01 mol of K₂CO₃ must produce 0.01 moles of SrCO₃
Answer:
Butan-2-one
Explanation:
1. 1700 cm⁻¹
A strong peak near 1700 cm⁻¹ is almost certainly a carbonyl (C=O) group.
2. Triplet-quartet
A triplet-quartet pattern indicates an ethyl group.
The 2H quartet is a CH₂ adjacent to a CH₃. The peak normally occurs at δ 1.3, but it is shifted 1.2 ppm downfield to δ 2.47 by an adjacent C=O group.
The 3H triplet at δ 1.05 is the methyl group. It, too, is shifted downfield from its normal position at δ 0.9. The effect is smaller, because the methyl group is further from the carbonyl.
3. 3H(s) at δ 2.13
This indicates a CH₃ group with no adjacent hydrogen atoms.
It is shifted 0.8 ppm downfield to δ 2.13 by the adjacent C=O group.
4. Identification
The identified pieces are CH₃CH₂-, -(CO)-, and -CH₃. There is only one way to put them together: CH₃CH₂-(C=O)-CH₃.
The compound is butan-2-one.
Answer:
1.33 L.
Explanation:
- We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and T are constant, and have different values of P and V:
<em>(P₁V₁) = (P₂V₂)</em>
<em></em>
Knowing that:
V₁ = 4.0 L, P₁ = 2.0 atm,
V₂ = ??? L, P₂ = 6.0 atm.
- Applying in the above equation
(P ₁V₁) = (P₂V₂)
<em>∴ V₂ = P ₁V₁/P₂</em> = (2.0 atm)(4.0 L)/(6.0 atm) =<em> 1.33 L.</em>