The correct answer is :
Unit vectors I and j along the x-axis and y-axis, respectively, define the Cartesian coordinate system. The radial unit vector r, which indicates the direction from the origin, and the unit vector t, which is orthogonal (perpendicular) to the radial direction, together create the polar coordinate system.
We can obtain the horizontal component by applying the trigonometric identity of Cos(Ф), and if we obtain the component on the x axle, such as 22000 (m)×Cos(51°) = x, we may determine that x = 13845.05 metres. We need to obtain the vector components because we already know the distance and the angle.
To learn more about Cartesian unit-vector refer the link:
brainly.com/question/26776558
#SPJ9
<span>A microcomputer that is smaller, lighter, and less powerful than a notebook, and that has a touch sensitive screen, is called a tablet. Tablets are used similarly to computers in the way that information can be stored, viewed and edited on them.</span>
I believe the answer you are looking for is perception.
Answer:
0.15
Explanation:
Assuming the rope is horizontal, sum the forces in the y direction:
∑F = ma
N − mg = 0
N = mg
Sum the forces in the x direction:
∑F = ma
F − Nμ = ma
Substitute:
F − mgμ = ma
mgμ = F − ma
μ = (F − ma) / (mg)
Plug in values:
μ = (8.0 N − 2.0 kg × 2.5 m/s²) / (2.0 kg × 9.8 m/s²)
μ = 0.15
Answer:
A-Caclcuate the potential energy of the ball at that height
Explanation:
(a). Mass of the Body = 10 kg.
Height = 10 m.
Acceleration due to gravity = 9.8 m/s².
Using the Formula,Potential Energy = mgh
= 10 × 9.8 × 10 = 980 J.
(b). Now, By the law of the conservation of the Energy, Total amount of the energy of the system remains constant.
∴ Kinetic Energy before the body reaches the ground is equal to the Potential Energy at the height of 10 m.
∴ Kinetic Energy = 980 J.
(c). Kinetic Energy = 980 J.
Mass of the ball = 10 kg.
∵ K.E. = 1/2 × mv²
∴ 980 = 1/2 × 10 × v²
∴ v² = 980/5
⇒ v² = 196
∴ v = 14 m/s.