1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zmey [24]
3 years ago
14

the law of blank of matter and energy states that matter cannot be made nor destroyed but can only be changed from one form to a

nother
Physics
1 answer:
MissTica3 years ago
4 0
Law of conservation is what ur referring to
You might be interested in
In a research facility, a person lies on a horizontal platform which floats on a film of air. When the person's heart beats, it
anastassius [24]

Answer: 3.48g

Explanation:

here, we will be using conservation of momentum to solve the problem. i.e the total momentum remains unchanged, unless an external force acts on the system. We'll in thus question, there is no external force acting in the system.

Remember, momentum = mass * velocity, then

mass of blood * velocity of blood = combined mass of subject and pallet * velocity of subject and pallet

Velocity of blood = 56.5cm = 0.565m

mass of blood * 0.565 = 54kg * (0.000063/0.160)

mass of blood * 0.565 = 54 * 0.00039375

mass of blood * 0.565 = 0.001969

mass of blood = 0.00348kg

Thus, the mass of blood that leaves the heart is 3.48g

7 0
3 years ago
Read 2 more answers
An ice cream maker has a refrigeration unit which can remove heat at 120 Js'. Liquid ice
Rom4ik [11]

Answer:

The amount of heat energy that must be removed from the mixture to cool it to its freezing point, of -16°C is 45,360 J

Explanation:

The given parameters for the refrigeration unit and the ice cream are;

The power of the refrigeration unit = 120 J/s

The mass of the liquid ice cream, m = 0.6 kg

The initial temperature of the liquid ice cream, T₁ = 20°C

The freezing point temperature of the ice cream, T₂ = -16°C

The specific heat capacity of the ice cream, c = 2,100 J/kg⁻¹·°C⁻¹

The amount of heat energy that must be removed from the mixture to cool it to its freezing point, ΔQ, is given as follows;

ΔQ = m × c × ΔT

Where;

ΔT = T₁ - T₂

∴ ΔQ = m × c × (T₁ - T₂)

Therefore, by substituting the known values, we have;

ΔQ = 0.6 × 2,100 × (20 - (-16)) = 45,360

The amount of heat energy that must be removed from the mixture to cool it to its freezing point, of -16°C = ΔQ = 45,360 J.

8 0
2 years ago
Using software, a simulation of a javelin being thrown both on Earth and on the moon is created. In both cases, the velocity and
mario62 [17]

Horizontal distance covered by a projectile is X = Vix *T

where Vix is the initial horizontal component of velocity and T is time taken by the projectile

Vix = ViCos theta

In question they said that initial velocity and angle is same on earth and moon

so Vix would remains same

now let's see about time taken T

time taken to reach the highest point

Vfy = Viy +gt

at highest point vertical velocity become zero so Vfy =0

0 = Vi Sin theta + gt

t = Vi Sintheta /g

Total time taken to land will be twice of that

On earth

Te= 2t

Te = 2Sinθ/g

on moon g is one-sixth of g(earth)

Tm = 2Sinθ/(g/6)

Tm = 6(2Sinθ/g)

Tm = 6Te

so total time taken by the projectile on moon will be six times the time taken on earth

From first equation X = Vix*T

we can see that X will also be 6 times on moon than earth

so projectile will cover 6 times distance on moon than on earth

4 0
2 years ago
Read 2 more answers
The drawing shows a large cube (mass = 28.6 kg) being accelerated across a horizontal frictionless surface by a horizontal force
MrRissso [65]

Answer:

P= 454.11 N

Explanation:

Since P is the only horizontal force acting on the system, it can be defined as the product of the acceleration by the total mass of the system (both cubes).

P= (M+m)*a\\a = \frac{P}{28.6 +4.3}\\a = \frac{P}{32.9}

The friction force between both cubes (F) is defined as the normal force acting on the smaller cube multiplied by the coefficient of static friction. Since both cubes are subject to the same acceleration:

F = m * a*\mu \\F= 4.3*0.710*\frac{P}{32.9}\\F=3.053*\frac{P}{32.9}

In order for the small cube to not slide down, the friction force must equal the weight of the small cube:

3.053*\frac{P}{32.9} = 4.3 * g\\\\P = \frac{4.3*9.8*32.9}{3.053} \\P= 454.11 N

The smallest magnitude that P can have in order to keep the small cube from sliding downward is 454.11 N

8 0
3 years ago
Dimensional Analysis : 3 days to seconds
LuckyWell [14K]
Hi,

To convert 3 days to seconds write this.

1h = 3600s
24h = 3600 · 24 = 86400
3 days = 3 · 86400 = 259200sec

Hope this helps.
r3t40
8 0
2 years ago
Read 2 more answers
Other questions:
  • Keaton is asked to solve the following physics problem:
    6·1 answer
  • A student, standing on a scale in an elevator at rest, sees that his weight is 840 n. as the elevator rises, his weight increase
    7·1 answer
  • A certain amount of a monatomic gas is maintained at constant volume as it is cooled by 50K. This feat is accomplished by removi
    8·1 answer
  • A steel railroad track has a length of 23 m when the temperature is 7◦C. What is the increase in the length of the rail on a hot
    15·1 answer
  • Does a rolling ball on a level floor have PE or KE? Explain.
    15·1 answer
  • Which statement did Kepler’s investigations of the movement of the planets explain?
    10·2 answers
  • can someone help me answer this correctly in the next 20 minutes? I’ll give out a brainliest if you can answer it right :)
    13·1 answer
  • MIDDLE SCHOOL SCIENCE- <br> Please help, I will give brainliest to best answer.
    5·1 answer
  • Can some one help me with this so i can bring my grade up
    11·1 answer
  • A small car of mass 1200 kg traveling east at 60m/s collides at an intersection with a truck of mass 3000 kg that is traveling d
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!