Answer: 94.13 L
Explanation: In STP in an ideal gas there is a standard value for both temperature and pressure. At STP,pressure is equal to 1atm and the temperature at 0°C is equal to 273.15K. This problem is an ideal gas so we use PV=nRT where R is a constant R= 0.08205 L.atm/mol.K.
To find volume, derive the equation, it becomes V=nRT/P. Substitute the values. V= 4.20 mol( 0.08205L.atm/mol.K)(273.15K) / 1 atm = 94.13 L. The mole units, atm and K will be cancelled out and L will be the remaining unit which is for volume.
Answer:
+125.4 KJmol-1
Explanation:
∆H C4H10(g) = -2877.6kJ/mol
∆H C(s)=-393.5kJ/mol
∆H H2(g) = -285.8
∆H reaction= ∆Hproducts - ∆H reactants
∆H reaction= (-2877.6kJ/mol) - [4(-393.5kJ/mol) +5(-285.8)]
∆H reaction= +125.4 KJmol-1
Answer:
1.Respiration of animals and plants.
2.The burning of fossil fuels.
3.Bacteria decompose corpses.
D it’s quartz on the Mohs scale thing it’s ranked 7
We are told we have an oxyacid of the formula HOFO. We will assume the atoms are in this order and will draw a proper lewis structure for this compound by first drawing bonds between each of the 4 atoms and then place the remaining electron pairs on each atom:
.. .. ..
H - O - F - O:
·· ·· ··
We can calculate the formal charge of an atom using the following formula:
Formal charge = [# of valence electrons] - [# of non-bonded electrons + # of bonds]
H: Formal charge = [1]-[0+1] = 0
O: Formal charge = [6]-[4+2] = 0
F: Formal charge = [7]-[4+2] = +1
O: Formal charge = [6]-[6+1] = -1
As we can see the overall charge of the molecule is neutral since the fluorine as a +1 charge and the oxygen a -1 charge.