Answer:
The molar mass of a substance is defined as the mass in grams of 1 mole of that substance. One mole of isotopically pure carbon-12 has a mass of 12 g. ... That is, the molar mass of a substance is the mass (in grams per mole) of 6.022 × 1023 atoms, molecules, or formula units of that substance.
Explanation:
Answer:
357 g of the transition metal are present in 630 grams of the compound of the transition metal and iodine
Explanation:
In any sample of the compound, the percentage by mass of the transition metal is 56.7%. This means that for a 100 g sample of the compound, 56.7 g is the metal while the remaining mass, 43.3 g is iodine.
Given mass of sample compound = 630 g
Calculating the mass of iodine present involves multiplying the percentage by mass composition of the metal by the mass of the given sample;
56.7 % = 56.7/100 = 0.567
Mass of transition metal = 0.567 * 630 = 357.21 g
Therefore, the mass of the transition metal present in 630 g of the compound is approximately 357 g
Answer:
The answer you have selected in the screenshot is correct.
Its tendency to react with oxygen is correct.
Hope this helps.
SO4 -2, or Sulfate
Hope this helps! :)
Just look it up on goog^le or a chart