Answer:
(a) t = 1.67 s
(b) s₂ = 45 m
Explanation:
Here, we use the formula:
s = vt
FOR Seth:
s₁ = v₁t₁
where,
s₁ = distance covered by Seth
v₁ = speed of Seth = 9 m/s
t₁ = time taken by Seth
FOR Mack:
s₂ = v₂t₂
where,
s₂ = distance covered by Mack
v₂ = speed of Mack = 27 m/s
t₂ = time taken by Mack
since, initially Mack is 30 m behind Seth. Therefore,
(a)
s₂ = s₁ + 30 m
using formulae:
v₂t₂ = v₁t₁ + 30 m
but, the time of catching is same for both (t₁ = t₂ = t)
v₂t = v₁t + 30 m
using values:
(27 m/s)t - (9 m/s)t = 30 m
t = (30 m)/(18 m/s)
<u>t = 1.67 s</u>
(b)
s₂ = v₂t
using values:
s₂ = (27 m/s)(1.67 s)
<u>s₂ = 45 m</u>
Answer:
No Refraction takes places
Explanation:
When light travels from one medium to another at an angle of incidence 0 degree then no refraction takes place .
It is because according to Refraction law
sini =
sinr
where
are the refractive index of medium of incidence and medium of refraction .
When i = 0 , left side of the equation becomes 0 and thus r (angle of refraction) must be zero. So No refraction takes place
Answer:
3d shape is the shape of solid
Answer:
The greatest acceleration the man can give the airplane is 0.0059 m/s².
Explanation:
Given that,
Mass of man = 85 kg
Mass of airplane = 109000 kg
Distance = 9.08
Coefficient of static friction = 0.77
We need to calculate the greatest friction force
Using formula of friction

Where, m = mass of man
g = acceleration due to gravity
Put the value into the formula


We need to calculate the acceleration
Using formula of newton's second law


Put the value into the formula


Hence, The greatest acceleration the man can give the airplane is 0.0059 m/s².