The distance mirror M2 must be moved so that one wavelength has produced one more new maxima than the other wavelength is;
<u><em>L = 57.88 mm</em></u>
<u><em /></u>
We are given;
Wavelength 1; λ₁ = 589 nm = 589 × 10⁻⁹ m
Wavelength 2; λ₂ = 589.6 nm = 589.6 × 10⁻⁹ m
We are told that L₁ = L₂. Thus, we will adopt L.
Formula for the number of bright fringe shift is;
m = 2L/λ
Thus;
For Wavelength 1;
m₁ = 2L/(589 × 10⁻⁹)
For wavelength 2;
m₂ = 2L/(589.6)
Now, we are told that one wavelength must have produced one more new maxima than the other wavelength. Thus;
m₁ - m₂ = 2
Plugging in the values of m₁ and m₂ gives;
(2L/589) - (2L/589.6) = 2
divide through by 2 to get;
L[(1/589) - (1/589.6)] = 1
L(1.728 × 10⁻⁶) = 1
L = 1/(1.728 × 10⁻⁶)
L = 578790.67 nm
L = 57.88 mm
Read more at; brainly.com/question/17161594
Answer:
9.6J+88.2J=97.8J
Explanation:
Here the velocity of the seagull is given,mass is given and its height.
We have to find its mechanical energy my friend.
Mechanical energy=kinetic energy + potential energy.
First we will find kinetic energy.
For calculating kinetic energy we need mass and velocity,which are given here.
So, Ek=

So by substituting the values we get 9.6J.
Now we find the potential energy which is mgh.
By substituting the values we get 88.2J.
Then we add both of those and get 97.8J
I hope this satisfies you and make sure you contact me if it doesn't
<h3><u>Answer</u>;</h3>
≈ 5 Kgm²/sec
<h3><u>Explanation</u>;</h3>
Angular momentum is given by the formula
L = Iω, where I is the moment of inertia and ω is the angular speed.
I = mr², where m is the mass and r is the radius
= 0.65 × 0.7²
= 0.3185
Angular speed, ω = v/r
= (2 × 3.142 × r × 2.5) r
= 15.71
Therefore;
Angular momentum = Iω
= 0.3185 × 15.71
= 5.003635
<u>≈ 5 Kgm²/sec</u>
Answer:
Explanation:
A grounded wire is sometimes strung along the tops of the towers to provide lightning protection.
In areas where the neutral is grounded or earthed, it is essential to endure that the neutral and the live or hot wires are not confused for each other.
When this happens, the fuses on the transformer will not operate unless the fault is very close to the transformer. The fuses in the consumer's intake box, will not operate.
Answer:
<em>In physics, energy is the quantitative property that must be transferred to an object in order to perform work on, or to heat, the object. Energy is a conserved quantity; the law of conservation of energy states that energy can be converted in form, but not created or destroyed.</em>
<em />
<em>In physics, energy is the quantitative property that must be transferred to an object in order to perform work on, or to heat, the object. Energy is a conserved quantity; the law of conservation of energy states that energy can be converted in form, but not created or destroyed.</em>
Explanation:
<h2>
<u><em>HOPE THIS HELPS</em></u></h2>