Answer:
a) V = 0.354
b) G = 25.34 GPA
Explanation:
Solution:
We first determine Modulus of Elasticity and Modulus of rigidity
Elongation of rod ΔL = 1.4 mm
Normal stress, δ = P/A
Where P = Force acting on the cross-section
A = Area of the cross-section
Using Area, A = π/4 · d²
= π/4 · (0.0020)² = 3.14 × 10⁻⁴m²
δ = 50/3.14 × 10⁻⁴ = 159.155 MPA
E(long) = Δl/l = 1.4/600 = 2.33 × 10⁻³mm/mm
Modulus of Elasticity Е = δ/ε
= 159.155 × 10⁶/2.33 × 10⁻³ = 68.306 GPA
Also final diameter d(f) = 19.9837 mm
Initial diameter d(i) = 20 mm
Poisson said that V = Е(elasticity)/Е(long)
= - <u>( 19.9837 - 20 /20)</u>
2.33 × 10⁻³
= 0.354,
∴ v = 0.354
Also G = Е/2. (1+V)
= 68.306 × 10⁹/ 2.(1+ 0.354)
= 25.34 GPA
⇒ G = 25.34 GPA
Answer:
Wind energy is converted to Mechanical energy which is then converted in to electrical energy
Explanation:
In a wind mill the following energy conversions take place
a) Wind energy is converted into Mechanical energy (rotation of rotor blades)
b) Mechanical energy is converted into electrical energy (by using electric motor)
This electrical energy is then used for transmission through electric lines.
Answer:
Sealing agent
Explanation:
Generally, when we have water leaks in almost any building or equipment, we use a sealant. However, this sealant could be of different types depending on the peculiarity of the leakage.
Thus, the correct answer is sealing agent.
Answer: Option D is not true of hydraulic valves. A hydraulic valve is a device that can change the opening degree of liquid flow path
Explanation:
The pilot check valve allows flow of liquid in one direction and blocks flow in the opposite direction