Efficiency = (Wanted) energy out ÷ energy in × 100
Energy in = 400J
Wanted Energy out = 240J
Energy cannot be used up, only transferred, so the remaining energy is most likely to be transferred into unwanted energy (loss of energy) such as heat energy.
Efficiency = 240 ÷ 400 × 100
Efficiency = 0.6 × 100
Efficiency = 60%
MEMORIZED E=h*v h=6.626x10-34J*s INFORMED v=7.21x1014S-1CALCULATE E=h*v E=(6.626x10-34J*s)*(7.21x1014s-1) The "s" cancels out. s-1=1/s so you get s/s so you are left with Solution 4.78 10-19 J OR .478 aJ <span>Apex - 467 nm ^.^ hopefully thats the correct thing</span>
Answer: 
Explanation:
The diffraction angles
when we have a slit divided into
parts are obtained by the following equation:
(1)
Where:
is the width of the slit
is the wavelength of the light
is an integer different from zero.
Now, the second-order diffraction angle is given when
, hence equation (1) becomes:
(2)
Now we have to find the value of
:
(3)
Then:
(4)
(5)
Finally:
(6)
If<span> The </span>Sun<span> Went Out, How Long </span>Could<span> Life On </span>Earth<span> Survive? ... (which is actually physically impossible), the </span>Earth would stay<span> warm—at least ... from the planet's core </span>would<span> equal the</span>heat<span> that the </span>Earth<span> radiates into space, ... Photosynthesis </span>would<span> halt immediately, and </span>most<span> plants</span>would<span> die </span>in<span> a few </span>weeks<span>.</span>
A child climbing a ladder is transforming kinetic energy into potential energy.