(a) 1200 rad/s
The angular acceleration of the rotor is given by:

where we have
is the angular acceleration (negative since the rotor is slowing down)
is the final angular speed
is the initial angular speed
t = 10.0 s is the time interval
Solving for
, we find the final angular speed after 10.0 s:

(b) 25 s
We can calculate the time needed for the rotor to come to rest, by using again the same formula:

If we re-arrange it for t, we get:

where here we have
is the initial angular speed
is the final angular speed
is the angular acceleration
Solving the equation,

Answer:
v₂ = 70 m / s
Explanation:
For this exercise let's use Bernoulli's equation
where subscript 1 is for the top of the mountain and subscript 2 is for Tuesday's level
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ +1/2 ρ v₂² + ρ g y₂
indicate that the pressure in the two points is the same, y₁ = 250 m, y₂ = 0 m, the water in the upper part, because it is a reservoir, is very large for which the velocity is very small, we will approximate it to 0 (v₁ = 0), we substitute
ρ g y₁ = ½ ρ v₂²
v₂ =
let's calculate
v₂ = √( 2 9.8 250)
v₂ = 70 m / s
Answer:
For the first one c is the answer
For the second one c is also the answer
For the third one is b
Explanation:
I took that
The first thing to do is to define the origin of the coordinate system as the point at which the moped journey begins.
Then, you must write the position vector:
r = -3j + 4i + 3j
Rewriting
r = 4i
To go back to where you started, you must go
d = -4i
That is to say, must travel a distance of 4Km to the west.
Answer
West, 4km.