To determine the centroid of the object first moment of area is used.
To predict the resistance of a shape to bending and deflection which are directly proportional, second moment of area is used.
Answer:
The work done by gravity is 
Explanation:
The data given in the question is :
Mass is 
Height from ground is 
As we know , the work done is state function , it depends on initial and final position not on the path followed.
So, work done by gravity = change in potential energy
Work done = Initial potential energy - final potential energy
Insert values from question
Work done = 
Work done = 
So, work done = 
Hence the work done by gravity is 
Answer:
Explanation:
Initial kinetic energy of the system = 1/2 mA v0²
If Vf be the final velocity of both the carts
applying conservation of momentum
final velocity
Vf = mAvo / ( mA +mB)
kinetic energy ( final ) = 1/2 (mA +mB)mA²vo² / ( mA +mB)²
= mA²vo² / 2( mA +mB)
Given 1/2 mA v0² / mA²vo² / 2( mA +mB) = 6
mA v0² x ( mA +mB) / mA²vo² = 6
( mA +mB) / mA = 6
mA + mB = 6 mA
5 mA = mB
mB / mA = 5 .
Answer:
Explanation:
No.
There is a difference between energy, called heat in this case, and temperature, which is a measure of the amount of heat contained in a material and is dependent on the material properties.
Temperature difference is what causes heat to move from one body to another.
Two objects at different temperatures placed in contact with one another will cause heat to move from the warmer body to the colder body until the temperature difference is eliminated.
The amount of heat leaving the warmer body will exactly equal the amount of heat absorbed by the cooler body. (assuming isolated system of two bodies) The temperature change within each of those bodies could be vastly different.
Example would be a 2 mm bead of molten lead dropped into a liter glass of tap water. The lead may cool several hundred °C as it solidifies while the water temperature would increase less than 1 °C