Answer:
K.E = 1.28 × 10^-17 KeV
Explanation:
Given that a particle accelerator at CERN can accelerate an electron through a potentialdifference of 80 kilovolts.
To Calculate the kinetic energy (in keV) of the electron, let us first find the electron charge which is 1.60 × 10^-19C
The kinetic energy = work done
K.E = e × kV
Substitute e and the voltage into the formula
K.E = 1.60 × 10^-19 × 80
K.E = 1.28 × 10^-17 KeV
Therefore, the kinetic energy is approximately equal to 1.28 × 10^-17 KeV
Answer:
i. The velocity ratio of the plane is 4.
ii. The mechanical advantage of the plane is 3.
Explanation:
i. The velocity ratio (VR) of an inclined plane is ratio of its length to the height. It is given as;
VR =
= 
Given: l = 12 m, L = 600 N, E = 200 N, h = 3 m.
So that,
VR = 
= 4
The velocity ratio of the plane is 4.
ii. Mechanical advantage (MA) expresses the relationship between the load overcome to effort applied.
MA =
= 
= 
= 3
The mechanical advantage of the plane is 3.
Therefore, the velocity ratio of the inclined plane is 4, and its mechanical advantage is 3.
Answer:
DNA ligase
Explanation:
DNA Ligase is the enzyme that binds fragments of DNA together by forming two phosphodiester bonds between the 3' hydroxyl end of one nucleotide with the 5' phosphate end of the other. This reaction requires the hydrolysis of ATP.
Answer:
Terminal velocity of object = 12.58 m/s
Explanation:
We know that the terminal velocity is attained when drag force and gravitational force are of the same magnitude.
Gravitational force = mg = 80 * 9.8 = 784 N
Drag force = 
Equating both, we have

So v = 12.58 m/s or v = -15.58 m/s ( not possible)
So terminal velocity of object = 12.58 m/s