Answer:
See explanation
Explanation:
The boiling point of a substance is affected by the nature of bonding in the molecule as well as the nature of intermolecular forces between molecules of the substance.
2-methylpropane has only pure covalent and nonpolar C-C and C-H bonds. As a result of this, the molecule is nonpolar and the only intermolecular forces present are weak dispersion forces. Therefore, 2-methylpropane has a very low boiling point.
As for 2-iodo-2-methylpropane, there is a polar C-I bond. This now implies that the intermolecular forces present are both dispersion forces and dipole interaction. As a result of the presence of stronger dipole interaction between 2-iodo-2-methylpropane molecules, the compound has a higher boiling point than 2-methylpropane.
Answer:
percentage by mass of each element in a compound.
Explanation:
Answer:
Precipitation
Explanation:
In the water cycle, water experiences different phase changes from one state to another in nature.
The cycling affords water to in solid, liquid and the vapor form.
From the cycle show, W represents precipitation.
- During precipitation, water in the atmosphere begins to fall.
- U is evaporation
- X is transpiration.
- V is the condensation.
Elements of Group 1 and group 2 in the periodic
table contain elements so reactive that they are never found in the free state
<u>Explanation</u>:
The metals in group 1 of periodic table consisting of 'alkali metals' which include lithium, potassium, sodium, rubidium, Francium and caesium. They are highly reactive because they have low ionisation energy and larger radius. The group 2 metals consist of 'alkaline earth metals' which include calcium, strontium, barium, beryllium, radium and magnesium. These alkaline earth metal have +2 oxidation number, hence are highly reactive.
These both group metals are mostly reactive and so are never found in a free state. When they are exposed to air they would immediately react with oxygen. Hence, are stored in oils to avoid oxidation.
Convalent Bond energy is low