Answer:
thus the coulomb force is F – 8.19x10-8N. this is also an attractive force, although it is traditionally shown as positive since gravitational force is always attractive. the ratio of the magnitude of the electrostatic force to gravitational force in this case is,thus,FFG – 2.27x1039 F F G – 2.27x 10 39.
-The group 7 elements are also known as the halogens.
They include fluorine, chlorine, bromine and iodine, which all have seven
electrons in their outer shell.
-The noble gases
make a group of chemical elements with comparable properties; under standard
conditions, they are all odorless, colorless, monatomic gases with very low
chemical reactivity. The six noble gases that occur naturally are helium, neon,
argon, krypton, xenon, and the radioactive radon. FACT: They can also act like
a glow stick.<span>[ID1] </span>
<span> [ID1]</span>
-Velocity is the speed of any moving object in a given direction, whilst Speed is the rate of an object's ability to move.
-Velocity can change if the direction or time is changed, the basic equation of velocity is: v = d/t
v - velocity
d - distance
t - time
If one of these factors change, it affects the other.
Hope this answers the question!
If you add 2 miles from west then 2 miles east then it would 4 miles all together.
Newton's second law states that the product between the mass and the acceleration of an object is equal to the force applied:

from which we find an expression for the acceleration:

(1)
Both objects are moving by uniformly accelerated motion (because the force applied is constant), so we can also using the following relationship

(2)
where

is the final speed of the object

is the initial speed
S is the distance covered
By substituting (1) into (2), and by removing

(since the final velocity of the two objects is zero), we find


where we can ignore the negative sign (because the force F will bring another negative sign).
For the first object, we have
![S= \frac{(2.0 m/s)^2 (4.0 kg)}{2F} = \frac{8}{F} [m]](https://tex.z-dn.net/?f=S%3D%20%5Cfrac%7B%282.0%20m%2Fs%29%5E2%20%284.0%20kg%29%7D%7B2F%7D%20%3D%20%20%5Cfrac%7B8%7D%7BF%7D%20%5Bm%5D%20)
And for the second object we have
![S= \frac{(4.0 m/s)^2 (1.0 kg)}{2F} = \frac{8}{F} [m]](https://tex.z-dn.net/?f=S%3D%20%5Cfrac%7B%284.0%20m%2Fs%29%5E2%20%281.0%20kg%29%7D%7B2F%7D%20%3D%20%5Cfrac%7B8%7D%7BF%7D%20%5Bm%5D%20)
And since the braking force applied to the two objects is the same, the two objects cover the same distance.