Answer:
I dont really know, I am sorry, but I am going to ask my teacher
An automobile travels along a straight road at 15.65 m/s through a 11.18 m/s speed zone. A police car observed the automobile. At the instant that the two vehicles are abreast of each other, the police car starts to pursue the automobile at a constant acceleration of 1.96 m/s2 . The motorist noticed the police car in his rear view mirror 12 s after the police car started the pursuit and applied his brakes and decelerates at 3.05 m/s2
Find the total time required for the police car to over take the automobile.
Answer:
15.02 sec
Explanation:
The total time required for the police car to overtake the automobile is related to the distance covered by both cars which is equal from instant point of abreast.
So; we can say :

By using the second equation of motion to find the distance S;





where ;
u = 0





Recall that:



= 46.68 - 7.85 t -2.505 t² = 0
Solving by using quadratic equation;
t = -6.16 OR t = 3.02
Since we can only take consideration of the value with a positive integer only; then t = 3.02 secs
From the question; The motorist noticed the police car in his rear view mirror 12 s after the police car started the pursuit;
Therefore ; the total time required for the police car to over take the automobile = 12 s + 3.02 s
Total time required for the police car to over take the automobile = 15.02 sec
Answer:
Now find the temperature of each surface, we have that the the temperature on the left side of the wall is T∞₁ - Q/h₁A and the temperature on the right side of the wall is T∞₂ + Q/h₂A.
Note: kindly find an attached diagram to the complete question given below.
Sources: The diagram/image was researched and taken from Slader website.
Explanation:
Solution
Let us consider the rate of heat transfer through the plane wall which can be obtained from the relations given below:
Q = T∞₁ -T₁/1/h₁A = T₁ -T₂/L/kA =T₂ -T∞₂/1/h₂A
= T∞₁ - T∞₂/1/h₁A + L/kA + 1/h₂A
Here
The convective heat transfer coefficient on the left side of the wall is h₁, while the convective heat transfer coefficient on the right side of the wall is h₂. the thickness of the wall is L, the thermal conductivity of the wall material is k, and the heat transfer area on one side of the wall is A. Q is refereed to as heat transfer.
Thus
Let us consider the convection heat transfer on the left side of the wall which is given below:
Q = T∞₁ -T₁/1/h₁A
T₁ = T∞₁ - Q/h₁A
Therefore the temperature on the left side of the wall is T∞₁ - Q/h₁A
Now
Let us consider the convection heat transfer on the left side of the wall which is given below:
Q= T₂ -T∞₂/1/h₂A
T₂ = T∞₂ + Q/h₂A
Therefore the temperature on the right side of the wall is T∞₂ + Q/h₂A