Answer:
2.01 M
Explanation:
Step 1: Calculate the moles of acetic acid (HC₂H₃O₂)
The molar mass of acetic acid is 60.05 g/mol. We will use this data to calculate the moles corresponding to 36.2 g of acetic acid.

Step 2: Convert the volume of solution to liters
We will use the relation 1000 mL = 1 L. We assume that the volume of solution is that of water (300 mL)

Step 3: Calculate the molarity of the solution
The molarity is equal to the moles of solute (acetic acid) divided by the liters of solution

If you only want to balance nuclear reactions, then you should know that number of nucleons are conserved before and after nuclear reaction. Also, charge is conserved as well.
Other things which are conserved in a nuclear reaction are:
Conservation of:
1. Parity
2. Spin
3. angular momentum(vector sum of intrinsic spin and orbital angular momentum)
4. linear momentum
5. Isotopic spin
6. Energy
Answer: Neutral Value
Explanation: pH of the blood is maintained at 7.0 to 7.5that is neutral value.
This is because if the pH of the is lower than the maintained value then it will become acidic .
Acidic pH can cause the medical urgency known as acidosis leading to vomiting, diarrhea etc.
If the pH becomes higher, then the blood will become basic in nature and it can also leas to the death of the person.
That is why the pH of the blood is maintianed at neutral value of 7.0 to 7.5
<u>Answer:</u> The additional information that is helpful in calculating the mole percent of XCl(s) and ZCl(s) is the molar masses of Z and X
<u>Explanation:</u>
To calculate the mole percent of a substance, we use the equation:

Mass percent means that the mass of a substance is present in 100 grams of mixture
To calculate the number of moles, we use the equation:

We require the molar masses of Z and X to calculate the mole percent of Z and X respectively
Hence, the additional information that is helpful in calculating the mole percent of XCl(s) and ZCl(s) is the molar masses of Z and X