Answer:
The volume increases by 100%.
Explanation:
<u>Step 1:</u> Data given
Number of moles ideal gas = 1 mol
Initial temperature = 305 K
Final temperature = 32°C + 273.15 = 305.15 K
Initial pressure = 2 atm
final pressure = 101 kPa = 0.996792 atm
R = gasconstant = doesn't change
V1 = initial volume
V2= the final volume
<u>Step 2: </u>Calculate volume of original gas
P*V = n*R*T
(P*V)/ T = constante
(P1 * V1) / T1 = (P2 * V2)/ T2
In this situation we have:
(2atm * V1)/ 305 = (0.996792 *V2) / 305.15
0.006557*V1 = 0.003266*V2
V2 = 2*V1
We see that the final volume is twice the initial volume. So the volume gets doubled. The volume increases by 100%.
% by mass = (mass solute/mass solution)*100%
mass of the solute = 54.7 g
mass of the solution = mass solute + mass solvent=54.7+500=554.7 g
% by mass = (54.7/554.7)*100%≈0.0986*100% = 9.86%
Answer:
0.2mol/kg
Explanation:
molality is the concentration of a solution in moles of solute per kilogram of solvent
moles of solute (NaOH) = 2moles
mass of solvent in kg. =10kg
Therefore molality. = 2moles/10 kg
=0.2mol/kg
Answer:
i feel like it would be four
Explanation:
Srr if i was wrong