You can take two liquids of different densities (how much mass is in a given volume) and pour them into a funnel. An example is oil and water. When the mixture settles, the denser liquid will be at the bottom, and drips through the funnel first. This is a separation that you can just let occur naturally.
It's a combination of factors:
Less electrons paired in the same orbital
More electrons with parallel spins in separate orbitals
Pertinent valence orbitals NOT close enough in energy for electron pairing to be stabilized enough by large orbital size
DISCLAIMER: Long answer, but it's a complicated issue, so... :)
A lot of people want to say that it's because a "half-filled subshell" increases stability, which is a reason, but not necessarily the only reason. However, for chromium, it's the significant reason.
It's also worth mentioning that these reasons are after-the-fact; chromium doesn't know the reasons we come up with; the reasons just have to be, well, reasonable.
The reasons I can think of are:
Minimization of coulombic repulsion energy
Maximization of exchange energy
Lack of significant reduction of pairing energy overall in comparison to an atom with larger occupied orbitals
COULOMBIC REPULSION ENERGY
Coulombic repulsion energy is the increased energy due to opposite-spin electron pairing, in a context where there are only two electrons of nearly-degenerate energies.
So, for example...
↑
↓
−−−−−
↑
↓
−−−−−
↑
↓
−−−−− is higher in energy than
↑
↓
−−−−−
↓
↑
−−−−−
↑
↓
−−−−−
To make it easier on us, we can crudely "measure" the repulsion energy with the symbol
Π
c
. We'd just say that for every electron pair in the same orbital, it adds one
Π
c
unit of destabilization.
When you have something like this with parallel electron spins...
↑
↓
−−−−−
↑
↓
−−−−−
↑
↓
−−−−−
It becomes important to incorporate the exchange energy.
EXCHANGE ENERGY
Exchange energy is the reduction in energy due to the number of parallel-spin electron pairs in different orbitals.
It's a quantum mechanical argument where the parallel-spin electrons can exchange with each other due to their indistinguishability (you can't tell for sure if it's electron 1 that's in orbital 1, or electron 2 that's in orbital 1, etc), reducing the energy of the configuration.
For example...
↑
↓
−−−−−
↑
↓
−−−−−
↑
↓
−−−−− is lower in energy than
↑
↓
−−−−−
↓
↑
−−−−−
↑
↓
−−−−−
To make it easier for us, a crude way to "measure" exchange energy is to say that it's equal to
Π
e
for each pair that can exchange.
So for the first configuration above, it would be stabilized by
Π
e
(
1
↔
2
), but the second configuration would have a
0
Π
e
stabilization (opposite spins; can't exchange).
PAIRING ENERGY
Pairing energy is just the combination of both the repulsion and exchange energy. We call it
Π
, so:
Π
=
Π
c
+
Π
e
Inorganic Chemistry, Miessler et al.
Inorganic Chemistry, Miessler et al.
Basically, the pairing energy is:
higher when repulsion energy is high (i.e. many electrons paired), meaning pairing is unfavorable
lower when exchange energy is high (i.e. many electrons parallel and unpaired), meaning pairing is favorable
So, when it comes to putting it together for chromium... (
4
s
and
3
d
orbitals)
↑
↓
−−−−−
↑
↓
−−−−−
↑
↓
−−−−−
↑
↓
−−−−−
↑
↓
−−−−−
↑
↓
−−−−−
compared to
↑
↓
−−−−−
↑
↓
−−−−−
↑
↓
−−−−−
↑
↓
−−−−−
↑
↓
−−−−−
↑
↓
−−−−−
is more stable.
For simplicity, if we assume the
4
s
and
3
d
electrons aren't close enough in energy to be considered "nearly-degenerate":
The first configuration has
Π
=
10
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
1
↔
5
,
2
↔
3
,
2
↔
4
,
2
↔
5
,
3
↔
4
,
3
↔
5
,
4
↔
5
)
The second configuration has
Π
=
Π
c
+
6
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
2
↔
3
,
2
↔
4
,
3
↔
4
)
Technically, they are about
3.29 eV
apart (Appendix B.9), which means it takes about
3.29 V
to transfer a single electron from the
3
d
up to the
4
s
.
We could also say that since the
3
d
orbitals are lower in energy, transferring one electron to a lower-energy orbital is helpful anyways from a less quantitative perspective.
COMPLICATIONS DUE TO ORBITAL SIZE
Note that for example,
W
has a configuration of
[
X
e
]
5
d
4
6
s
2
, which seems to contradict the reasoning we had for
Cr
, since the pairing occurred in the higher-energy orbital.
But, we should also recognize that
5
d
orbitals are larger than
3
d
orbitals, which means the electron density can be more spread out for
W
than for
Cr
, thus reducing the pairing energy
Π
.
That is,
Π
W
Answer:
Microwaves cook food by heating the liquid water it contains. Even frozen food contains some liquid water, at least on the outside surface exposed to warm air on the way from the freezer to the oven.
Explanation:
mark as brainliest pls!!!
The testable question which will provide evidence that elements in the same group have similar properties is valency
<h3>What is the valency?</h3>
In essence, how many electrons are present in their outermost shell.
Valency and Groups in the periodic table, elements are arranged in order of their atomic numbers and hence, the periodic table is a systematic arrangement of elements in an array of vertical columns called Groups and horizontal arrays called Periods.
which of the following testable questions will provide evidence that elements in the same group have similar properties A. Valency B. Orbit C. Group D. Period
Since, the reactive capacities of elements is dependent on the number of electrons on its outermost shell, we can conclude on this note that, Elements in the same group have similar properties.
Learn more on Groups and Valency:
brainly.com/question/1645905
Terms in this set (28) Explain how knowledge of chemistry can be a more informed citizens? Knowledge of chemistry and other sciences can help you evaluate the data presented, arrive at an informed opinion, and take appropriate action.