213034 torr is the osmotic pressure.
Explanation:
osmotic pressure is calculated by the formula:
osmotic pressure= iCrT
where i= no. of solute
c= concentration in mol/litre
R= Universal Gas constant
T = temp
It is given that solution is 3% which is 3gms in 100 ml.
let us calculate the concentration in moles/litre
3gm/100ml*1000ml/1L*1mol NaCl/55.84g NaCl
= 5.372 gm/litre
Putting the values in the formula, Temp in Kelvin 318.5K
osmotic pressure= 2*5.372*0.083 * 318.5 Gas constant 0.083
= 284.023 bar or 213018 torr. c= 5.372 moles/L
i=2 for NaCl
Tarnish is Ag2S-silver sulfide and the oxidation state of silver is +1
Answer:
The use of pomace for animal feed might be chosen if minimizing production costs is desired
Explanation:
i've taken the test
The chemical equation for Hydrogen is just H
To do this problem, we must first look at the balanced chemical equation for the decomposition of potassium chlorate:
<span>2KClO3 --> 2KCl + 3O2 </span>
<span>We can take the given amount of grams, and use the molar mass of KClO3 to convert to moles. Then, we can use the stoichiometric ratios to relate moles of KClO3 to moles of O2. </span>
<span>(39.09)+(35.45)+(3*15.99)= 122.51 g/ mol = molar mass of KClO3 </span>
<span>45.8 g KClO3/ 122.51 g/ mol KClO3 = .374 moles KClO3 </span>
<span>.374 mol KClO3 *(3 moles O2/2 mol KClO3)= .560 moles O2 </span>
<span>Once we have moles of O2, we can convert to grams of O2. </span>
<span>(2*15.99)= 31.98 g/mol = molar mass of O2 </span>
<span>(.560 moles O2) (31.98 g/mol)= 17.91 g O2 </span>
<span>Hope this helps :)</span>