Answer:
The average power delivered by the elevator motor during this period is 6.686 kW.
Explanation:
Given;
mass of the elevator, m = 636 kg
initial speed of the elevator, u = 0
time of motion, t = 4.5 s
final speed of the elevator, v = 2.05 m/s
The upward force of the elevator is calculated as;
F = m(a + g)
where;
m is mass of the elevator
a is the constant acceleration of the elevator
g is acceleration due to gravity = 9.8 m/s²

F = (636)(0.456 + 9.8)
F = (636)(10.256)
F = 6522.816 N
The average power delivered by the elevator is calculated as;

Therefore, the average power delivered by the elevator motor during this period is 6.686 kW.
The Kinetic energy would be 1/2IL².
<h3>What is
Rotational Kinetic energy ?</h3>
- Rotational energy also known as angular kinetic energy is defined as: The kinetic energy due to the rotation of an object and is part of its total kinetic energy. Rotational kinetic energy is directly proportional to the rotational inertia and the square of the magnitude of the angular velocity.
As we know linear Kinetic energy = 1/2mv²
where m= mass and v= velocity.
Similarly rotational kinetic energy is given by = 1/2IL²
where I- moment of inertia and L=angular momentum.
To know more about the Kinetic energy , visit:
brainly.com/question/29807121
#SPJ4
Answer:37 J
Explanation:
Given
Step :1
Heat added Q=44 J
Work done=-20 J

Step :2
Heat added Q=-61 J
work done 



as the process is cyclic


work done in compression is 37 J
Answer:
I think it's the most important part in this