If you hear a clap of thunder in a time of 16.2s after seeing the associated lightning strike, you are: 5508 m far from the lightning strike
To solve this problem we must consider that the speed of light is greater than the speed of sound, therefore to calculate the distance we must use the speed of sound (340 m/s).
The formula and procedure we will use to solve this exercise is:
x = v * t
Where:
- x = distance
- t = time
- v = velocity
Information about the problem:
- v(sound) = 340 m/s
- t = 16.2 s
- x=?
Applying the distance formula we have that:
x = v * t
x= 340 m/s * 16.2 s
x = 5508 m
<h3>What is velocity?</h3>
It is a physical quantity that indicates the displacement of a mobile per unit of time, it is expressed in units of distance per time, for example (miles/h, km/h).
Learn more about velocity at: brainly.com/question/80295?source=archive
#SPJ4
Answer with explanation:
The given vectors in are reduced to their componednt form as shown
For vector A it can be written as

Similarly vector B can be written as

Hence The sum and difference is calculated as

The direction is given by
with positive x axis.
Similarly

The direction is given by
with positive x axis.
The answer to the given question above would be a PUNNETT SQAURE. SO the name of the <span>special science tool that he can use to predict genetic outcome is a PUNNETT SQUARE. Hope this answers your question. Have a great day ahead. Let me know if you need more help next time.</span>
Answer:
Explanation:
initial velocity, u = 0
final velocity, v = 60 mph = 26.8 m/s
time t = 10 s
Let a be the acceleration and s be he distance traveled.
Use first equation of motion
v = u + a t
26.8 = 0 + a x 10
a = 2.68 m/s
Use second equation of motion
s = ut + 1/2 at²
s = 0 + 0.5 x 2.68 x 10 x 10
s = 134 m
As, 1 m = 3.28 ft
So, s = 134 x 3.28 ft
s = 439.6 ft
Answer:
The mass of the massive object at the center of the Milky Way galaxy is 
Explanation:
Given that,
Diameter = 10 light year
Orbital speed = 180 km/s
Suppose determine the mass of the massive object at the center of the Milky Way galaxy.
Take the distance of one light year to be 9.461×10¹⁵ m. I was able to get this it is 4.26×10³⁷ kg.
We need to calculate the radius of the orbit
Using formula of radius



We need to calculate the mass of the massive object at the center of the Milky Way galaxy
Using formula of mass

Put the value into the formula


Hence, The mass of the massive object at the center of the Milky Way galaxy is 