Time = (distance) / (speed)
<em></em>
Time = (450 km) / (100 m/s)
Time = (450,000 m) / (100 m/s)
Time = <em>4500 seconds </em>(that's 75 minutes)
Note:
This is about HALF the speed of the passenger jet you fly in when you go to visit Grandma for Christmas.
If the International Space Station flew at this speed, it would immediately go ker-PLUNK into the ocean.
The speed of the International Space Station in its orbit is more like 3,100 m/s, not 100 m/s.
Answer:
-8.4°C
Explanation:
From the principle of heat capacity.
The heat sustain by an object is given as;
H = m× c× (T2-T1)
Where H is heat transferred
m is mass of substance
T2-T1 is the temperature change from starting to final temperature T2.
c- is the specific heat capacity of ice .
Note : specific heat capacity is an intrinsic capacity of a substance which is the energy substained on a unit mass of a substance on a unit temperature change.
Hence ; 35= 1× c× ( T2-(-25))
35= c× ( T2+25)
35 =2.108×( T2+25)
( T2+25)= 35/2.108= 16.60°{ approximated to 2 decimal place}
T2= 16.60-25= -8.40°C
C, specific heat capacity of ice is =2.108 kJ/kgK{you can google that}
The first scientist to introduce the concept of inertia was Galileo
Answer:
A line of symmetry is a line that separates a shape into two identical halves.
Rotational symmetry is the same thing except when you rotate the object, it has to have the exact same line of symmetry.
<u><em>Hope this helps!!!</em></u>
Answer:
48.6°
Explanation:
The forward force, F equals the component of the weight along the slope.
So mgsinθ = ma where a = acceleration and θ = angle between the slope and the horizontal.
So a = gsinθ
Since we are given that a = 75%g = 0.75g,
0.75g = gsinθ
sinθ = 0.75
θ = sin⁻¹(0.75)
= 48.6°