Answer:
Answer below
Explanation:
First to show combustion, you use O₂.
So C₆H₁₀O₅ + O₂ is the reaction. Assuming complete combustion, all you get as products are CO₂ and H₂O. Then you have to balance the full reaction.
C₆H₁₀O₅ + 6O₂ -----> 6CO₂ + 5H₂O
6 Carbons on each side
10 Hydrogens on each side
17 Oxygens on each side
Answer:
67.1%
Explanation:
Based on the chemical equation, if we determine the moles of sodium carbonate, we can find the moles of NaHCO₃ that reacted and its mass, thus:
<em>Moles Na₂CO₃ - 105.99g/mol-:</em>
6.35g * (1mol / 105.99g) = 0.0599 moles of Na₂CO₃ are produced.
As 1 mole of sodium carbonate is produced when 2 moles of NaHCO₃ reacted, moles of NaHCO₃ that reacted are:
0.0599 moles of Na₂CO₃ * (2 moles NaHCO₃ / 1 mole Na₂CO₃) = 0.1198 moles of NaHCO₃
And the mass of NaHCO₃ in the sample (Molar mass: 84g/mol):
0.1198 moles of NaHCO₃ * (84g / mol) = 10.06g of NaHCO₃ were in the original sample.
And percent of NaHCO₃ in the sample is:
10.06g NaHCO₃ / 15g Sample * 100 =
<h3>67.1%</h3>
Explanation:
Composition of Stainless Steel
Steel is an alloy of iron and carbon. Stainless steels are steels containing at least 10.5% chromium, less than 1.2% carbon and other alloying elements
The required formula of hydrate is MgSO₃.6H₂O.
<h3>How do we calculate the formula of hydrate?</h3>
The number of moles of water per mole of anhydrous solid (x) will be computed by dividing the number of moles of water by the number of moles of anhydrous solid (x) to find the hydrate's formula.
Moles will be calculated as:
n = W/M, where
- W = given mass
- M = molar mass
Moles of MgSO₃ = 0.737g / 104.3g/mol = 0.007mol
Moles of H₂O = 0.763g / 18g/mol = 0.04 mol
Number of H₂O molecule = 0.04/0.007 = 5.7 = 6
So formula of hydrate is MgSO₃.6H₂O.
Hence required formula of hydrate compound is MgSO₃.6H₂O.
To know more about hydrate compound, visit the below link:
brainly.com/question/22411417
#SPJ1
<span>The student should
follow following steps to make 1 L of </span>2.0 M CaCl₂.<span>
<span>
1. First he should
calculate the number of moles of 2.0 M CaCl</span></span>₂ in 1 L solution.<span>
</span>Molarity of the solution = 2.0 M<span>
Volume of solution which should be prepared = 1 L
Molarity =
number of moles / volume of the solution
Hence, number of moles in 1 L = 2 mol
2. Find
out the mass of dry CaCl</span>₂ in 2 moles.<span>
moles =
mass / molar mass
Moles of CaCl₂ =
2 mol</span><span>
Molar mass of CaCl₂ = </span><span>110.98 g/mol
Hence, mass of CaCl</span>₂ = 2 mol x <span>110.98 g/mol
= 221.96
g
3. Weigh the mass
accurately
4. Then take a cleaned and dry1 L volumetric flask and place a funnel top of it. Then carefully add the salt into the volumetric flask and
finally wash the funnel and watch glass
with de-ionized water. That water also should be added into the volumetric
flask.
5. Then add some
de-ionized water into
the volumetric flask and swirl well until all salt are
dissolved.
<span>6. Then top up to
mark of the volumetric flask carefully.
</span></span>
7. As the final step prepared solution should be labelled.