So first make a force diagram. I would label forward forces + and backward forces -. Essentially, the drag force is equal to the Ft (force of tension) + Ff (force of friction on snowmobile - driver system). The force of Friction is equal to mu * Fn. We can find mu through the force of friction acting on the sled. 120 N = mu * Fn (equal to m * g of sled). mu of the Ice is equal to 0.167. So, 540 N = Ft + 0.167 * 4500 N. Ft = -211.5 N. <u>Ft is acting in the backwards direction at a magnitude of 211.5 N</u>
Answer:

Explanation:
Given:
- cross sectional area of the wire,

- density of aluminium wire,

- young's modulus of the material,

- wave speed,

<u>We have mathematical expression for strain as:</u>
...............................(1)
and since, 
where, T = tension force in the wire
equation (1) becomes:
............................(2)
<u>Also velocity ofwave in tensed wire:</u>
...................................(3)
where:
linear mass density of the wire

Now, equation (3) becomes

............................(4)
Using eq. (2) & (4) for tension T


putting the respective values


You put two ice cubes in a glass and fill the glass to the rim with water. As the ice melts, the water level remains the same.
Answer: Option D
<u>Explanation:</u>
As the ice is already in the water, and that has melted, there is no addition of volume into the glass. The water spills out if extra volume is added to the container. Hence, as there is no more volume added, there should be no change seen in the level of water.
The water level stays the same. This is because either it is a solid or liquid, the volume remains same. The volume of ice before melting is same as the volume of water, when melted into.
Answer;
By using kepler's 3rd law we find that;
-A year on Earth is shorter than a year on Saturn.
Explanation;
-Kepler’s 3rd law states that the square of a planet’s orbital period is proportional to the cube of its average distance from the Sun (semi-major axis), which tells us that more distant planets move more slowly in their orbits.
-In other words, if you square the 'year' of each planet, and divide it by the cube of its distance to the Sun, you get the same number, for all planets. The law captures the relationship between the distance of planets from the Sun, and their orbital periods.
Answer:
Je ne Sachez que Qu’est-ce que le