The answer is A. <span>Some work input is used to overcome friction. </span>
Answer:
The average current that this cell phone draws when turned on is 0.451 A.
Explanation:
Given;
voltage of the phone, V = 3.7 V
electrical energy of the phone battery, E = 3.15 x 10⁴ J
duration of battery energy, t = 5.25 h
The power the cell phone draws when turned on, is the rate of energy consumption, and this is calculated as follows;

where;
P is power in watts
E is energy in Joules
t is time in seconds

The average current that this cell phone draws when turned on:
P = IV

Therefore, the average current that this cell phone draws when turned on is 0.451 A.
The formula for the period of wave is: wave period is equals to 1 over the frequency.

To get the value of period of wave you need to divide 1 by 200 Hz. However, beforehand, you have to convert 200 Hz to cycles per second. So that would be, 200 cyles per second or 200/s.
By then, you can start the computation by dividing 1 by 200/s. Since 200/s is in fractional form, you have to find its reciprocal form and multiply it to one which would give you 1 (one) second over 200. This would then lead us to the value
0.005 seconds as the wave period.
wave period= 1/200 Hz
Convert Hz to cycles per second first
200 Hz x 1/s= 200/second
Make 200/second as your divisor, so:
wave period= 1/ 200/s
get the reciprocal form of 200/s which is s/200
then you can start the actual computation:
wave period= 1 x s divided by 200
this would give us an answer of
0.005 s.
Answer:
change in mass = 2.41*10^{8}kg
Explanation:
The change in the mass can be computed by using the relation
(1)
That is, the energy liberated comes from the mass of the nuclear fuel. The energy generated in one year is

Hence, by replacing in the equation (1) you have (c=3*10^{8}m/s)

HOPE THIS HELPS!!