Since the question manages to include moles, pressure, volume, and temperature, then it is evident that in order to find the answer we will have to use the Ideal Gas Equation: PV = nRT (where P = pressure; V = volume; n = number of moles; R = the Universal Constant [0.082 L·atm/mol·K]; and temperature.
First, in order to work out the questions, there is a need to convert the volume to Litres and the temperature to Kelvin based on the equation:
250 mL = 0.250 L
58 °C = 331 K
Also, based on the equation P = nRT ÷ V
⇒ P = (2.48 mol)(0.082 L · atm/mol · K)(331 K) ÷ 0.250 L
⇒ P = (67.31 L · atm) ÷ 0.250 L
⇒ P = 269.25 atm
Thus the pressure exerted by the gas in the container is 269.25 atm.
Answer:
ΔS = +541.3Jmol⁻¹K⁻¹
Explanation:
Given parameters:
Standard Entropy of Fe₂O₃ = 90Jmol⁻¹K⁻¹
Standard Entropy of C = 5.7Jmol⁻¹K⁻¹
Standard Entropy of Fe = 27.2Jmol⁻¹K⁻¹
Standard Entropy of CO = 198Jmol⁻¹K⁻¹
To find the entropy change of the reaction, we first write a balanced reaction equation:
Fe₂O₃ + 3C → 2Fe + 3CO
To calculate the entropy change of the reaction we simply use the equation below:
ΔS = ∑S
- ∑S
Therefore:
ΔS = [(2x27.2) + (3x198)] - [(90) + (3x5.7)] = 648.4 - 107.1
ΔS = +541.3Jmol⁻¹K⁻¹
Answer:
Strong acid
Explanation:
An acid is a substance that interacts with water to produce excess hydroxonium ions in an aqueous solution.
Hydroxonium ions are formed as a result of the chemical bonding between the oxygen of water molecules and the protons released by the acid due to its ionisation. This makes aqueous solution of acids conduct electricity.
A strong acid is one that ionizes almost completely. Examples are:
1. Hydrochloric acid
2. Tetraoxosulphate (VI) acid
3. Trioxonitrate (V) acid
4. Hydroiodic acid
5. Hydrobromic acid
Metals usually become cations since electrons are negatively charged and when they are lost there are more protons than electrons making a positive net charge in the atom. (cations are positively charged ions while anions are negatively charged ions)
I hope this helps. Let me know if anything is unclear.