The electric potential at the origin of the xy coordinate system is negative infinity
<h3>What is the electric field due to the 4.0 μC charge?</h3>
The electric field due to the 4.0 μC charge is E = kq/r² where
- k = electric constant = 9.0 × 10 Nm²/C²,
- q = 4.0 μC = 4.0 × 10 C and
- r = distance of charge from origin = x₁ - 0 = 2.0 m - 0 m = 2.0 m
<h3>What is the electric field due to the -4.0 μC charge?</h3>
The electric field due to the -4.0 μC charge is E = kq'/r² where
- k = electric constant = 9.0 × 10 Nm²/C²,
- q' = -4.0 μC = -4.0 × 10 C and
- r = distance of charge from origin = 0 - x₂ = 0 - (-2.0 m) = 0 m + 2.0 m = 2.0 m
Since both electric fields are equal in magnitude and directed along the negative x-axis, the net electric field at the origin is
E" = E + E'
= -2E
= -2kq/r²
<h3>What is the electric potential at the origin?</h3>
So, the electric potential at the origin is V = -∫₂⁰E".dr
= -∫₂⁰-2kq/r².dr
Since E and dr = dx are parallel and r = x, we have
= -∫₂⁰-2kqdxcos0/x²
= 2kq∫₂⁰dx/x²
= 2kq[-1/x]₂⁰
= -2kq[1/x]₂⁰
= -2kq[1/0 - 1/2]
= -2kq[∞ - 1/2]
= -2kq[∞]
= -∞
So, the electric potential at the origin of the xy coordinate system is negative infinity
Learn more about electric potential here:
brainly.com/question/26978411
#SPJ11
The parcel will undergo projectile motion, which means that it will have motion in both the horizontal and vertical direction.
First, we determine how long the parcel will fall using:
s = ut + 1/2 at²
where s will be the height, u is the initial vertical velocity of the parcel (0), t is the time of fall and a is the acceleration due to gravity.
5.5 = (0)(t) + 1/2 (9.81)(t)²
t = 1.06 seconds
A
Answer:
A. We have that radius r = 4.00m intensity I = 8.00 W/m^
total power = power/ Area ( 4πr2)= 8.00 w/m^2( 4π ( 4.00 m)2=1607.68 W
b) I = total power/ 4πr2= 8.00 W/m2 ( 4.00 m/ 9.5 m)2= 1.418 W/m2
c) E = total power x time= 1607 . 68 W x 1s= 1607.68 J
6 meters is left because you subtract 12 meters from 6
Answer:
20 pig callers
Explanation:
Given that:
A pig caller produced intensity level of a sound = 107 dB
To find how many pig callers required to generate an intensity level of 120 dB;
we have:
120 dB - 107 dB = 13 dB
Taking the logarithm function;

where;
= initial intensity


I = 19.95
I ≅ 20 pig callers