Answer:

Explanation:
given,
mass of the weight = 8 Kg
distance = 0.55 m
angle below horizontal = 30°
torque about shoulder




torque about his shoulder join is equal to 
Answer:
-0.4454 Joules
Explanation:
m = Mass of block = 2 kg
h = Height of extension = 17 cm = x
g = Acceleration due to gravity = 9.81 m/s²
Potential energy of the spring

The kinetic energy of the spring

In this system as the potential and kinetic energy is conserved from work energy equivalence we get

The work done by friction is -0.4454 Joules
To solve this you must set up what is called a proportion. A proportion is a way of comparing two comparing values where one of the four values is missing. In your problem the missing value is the height of the smallest tree in the model.
To set up a proportion, you need all of your values. The easiest way to do this is to list them:
Highest tree in real life: 40ft
Highest tree in model: 10ft
Smallest tree in real life: 4ft
Smallest tree in model: x
So know you can set your proportion like this:
40/4 = 4/x
(When setting up a proportion, you always want to have the values belong to each other. For example don't put the height of the small tree in the model underneath the value of the highest tree in real life.)
So know to find what the x values equals, we need to cross multiply. And then all that's left after that is to solve for x.
40 times x = 4 times 4
40x = 16
x = 2.5
The smallest tree in the model should equal 2.5 feet.
Hope this helps! :)
Answer:
Explanation:

from steam tables , at 250 kPa, and at
T₁ = 80⁰C ⇒ h₁ = 335.02 kJ/kg
T₂ = 20⁰C⇒ h₂ = 83.915 kJ/kg
T₃ = 42⁰C ⇒ h₃ = 175.90 kJ/kg
we know


according to energy balance equation


1140x9.8x2.4= 26,812.8 significant figures Make it 27,000