Answer:
n1 sin θ1 = n2 sin θ2 Snell's Law (θ1 is the angle of incidence)
sin θ2 = n1 / n2 * sin θ1
sin θ2 = 2.4 / 1.33 * sin θ1
sin θ2 = 1.80 * .407 = .734
θ2 = 47.2 deg
Answer:
The statements, observations, beliefs and suppositions all are the components of the pseudoscience.
Explanation:
The claims included in the pseudoscience including the beliefs, statements and practices are claimed to be scientific but these are devoid of any scientific evidences provided by the experimental procedures.
consider the motion along the horizontal direction :
v₀ = initial velocity in horizontal direction as the ball rolls off the table = 3.0 m/s
X = horizontal displacement of the ball = 2.0 m
a = acceleration along the horizontal direction = 0 m/s²
t = time taken to land = ?
using the kinematics equation
X = v₀ t + (0.5) a t²
2.0 = 3.0 t + (0.5) (0) t²
t = 2/3
consider the motion of the ball along the vertical direction
v₀ = initial velocity in vertical direction as the ball rolls off the table = 0 m/s
Y = vertical displacement of the ball = height of the table = h
a = acceleration along the vertical direction = 9.8 m/s²
t = time taken to land = 2/3
using the kinematics equation
Y = v₀ t + (0.5) a t²
h = 0 t + (0.5) (9.8) (2/3)²
h = 2.2 m
C 2.2 m
Answer:
v = 9.936 m/s
Explanation:
given,
height of cliff = 40 m
speed of sound = 343 m/s
assuming that time to reach the sound to the player = 3 s
now,
time taken to fall of ball


t = 2.857 s
distance
d = v x t
d = v x 2.875
time traveled by the sound before reaching the player



distance traveled by the wave in this time'
r = 0.143 x 343
r= 49.05 m
now,
we know.
d² + h² = r²
d² + 40² = 49.05²
d =28.387 m
v x 2.875=28.387 m
v = 9.936 m/s
Answer:
You will fly forward in the bus until you hit something.
Explanation:
While standing there on the bus, you are traveling at the same speed as the bus. If the bus suddenly stops, you will still be traveling at the same speed you started with. That is until you hit something hard enough or big enough to stop you.