Answer:
<u>structural arrangements</u>
_______________________________________
<h2>properties of daimond: </h2><h3>appearance: transparent</h3><h3>hardness: very hard</h3><h3>thermal conductivity :very poor</h3><h3>electric conductivity: poor</h3><h3>density:</h3>

<h3>uses: jewellery and drilling</h3>
_______________________________________
<h2>properties of graphite:</h2>
<h3>appearance: black shiny</h3><h3>hardness: soft ,slippery to touch</h3><h3>thermal conductivity : moderate</h3><h3>electric conductivity: good</h3><h3>density:</h3>

<h3>uses:dry cell, electric arc, pencil lead, lubricant</h3>
_______________________________________
<h2>How Diamond and Graphite are chemically identical?</h2>
- On heating diamond or graphite in the air, they burn completely to form carbon dioxide.
- - Equal quantities of diamond and graphite when burned, produce exactly the same amount of carbon dioxide.
_______________________________________
<h2>Why the physical properties of diamond and graphite are so different?</h2>
Due to the difference in the arrangement of carbon atoms in diamond and graphite
_______________________________________
<h2>
<em><u>hope</u></em><em><u> it</u></em><em><u> helps</u></em><em><u> you</u></em><em><u><</u></em><em><u>3</u></em></h2>
To find the net ionic equation we must first write the balanced equation for the reaction. We must bear in mind that the reagents Ca(NO3)2 and Na2S are in the aqueous state and as product we will have CaS in the solid state, since it is not soluble in water and NaNO3 in the aqueous state.
The balanced equation of the reaction will be:

Ca(NO3)2(aq) + → Ca(aq) + 2Na(s)NO3Now, c(aq)ompounds in the aqueous state can be written in their ionic form, so the reaction will transform into:Na2S +

So, the answer will be option A
Answer:
2NaOH + H2So4 》Na2So4+ 2H2O
Explanation:
SODIUM HYDROXIDE, 2NaOH IS (aq)
FULFURIC ACID, H2So4 IS (aq)
SODIUM SULFATE, Na2So4 IS (aq)
WATER,2H20 IS (l)
Answer: <em>Newton's first law</em>
Explanation: <em>The idea that objects only change their velocity due to a force is encapsulated in Newton's first law. Newton's first law: An object at rest remains at rest, or if in motion, remains in motion at a constant velocity unless acted on by a net external force.</em>
<em />